
Booth's Algorithm Example

CS440

Points to remember

 When using Booth's Algorithm:

 You will need twice as many bits in your

product as you have in your original two

operands.

 The leftmost bit of your operands (both

your multiplicand and multiplier) is a SIGN

bit, and cannot be used as part of the

value.

To begin

 Decide which operand will be the multiplier
and which will be the multiplicand

 Convert both operands to two's complement
representation using X bits

 X must be at least one more bit than is
required for the binary representation of the
numerically larger operand

 Begin with a product that consists of the
multiplier with an additional X leading zero bits

Example
 In the week by week, there is an example of

multiplying 2 x (-5)

 For our example, let's reverse the operation,

and multiply (-5) x 2

 The numerically larger operand (5) would require

3 bits to represent in binary (101). So we must

use AT LEAST 4 bits to represent the operands, to

allow for the sign bit.

 Let's use 5-bit 2's complement:

 -5 is 11011 (multiplier)

 2 is 00010 (multiplicand)

Beginning Product

 The multiplier is:

 11011

 Add 5 leading zeros to the multiplier to

get the beginning product:

 00000 11011

Step 1 for each pass

 Use the LSB (least significant bit) and the
previous LSB to determine the arithmetic action.

 If it is the FIRST pass, use 0 as the previous LSB.

 Possible arithmetic actions:

 00  no arithmetic operation

 01  add multiplicand to left half of product

 10  subtract multiplicand from left half of product

 11  no arithmetic operation

Step 2 for each pass

 Perform an arithmetic right shift
(ASR) on the entire product.

 NOTE: For X-bit operands, Booth's
algorithm requires X passes.

Example

 Let's continue with our example of multiplying

(-5) x 2

 Remember:

 -5 is 11011 (multiplier)

 2 is 00010 (multiplicand)

 And we added 5 leading zeros to the

multiplier to get the beginning product:

 00000 11011

Example continued

 Initial Product and previous LSB

 00000 11011 0

(Note: Since this is the first pass, we use 0 for the

previous LSB)

 Pass 1, Step 1: Examine the last 2 bits

 00000 11011 0

The last two bits are 10, so we need to:

 subtract the multiplicand from left half of product

Example: Pass 1 continued

 Pass 1, Step 1: Arithmetic action

(1) 00000 (left half of product)

 -00010 (mulitplicand)

 11110 (uses a phantom borrow)

 Place result into left half of product

 11110 11011 0

Example: Pass 1 continued

 Pass 1, Step 2: ASR (arithmetic shift right)

 Before ASR

 11110 11011 0

 After ASR

 11111 01101 1

(left-most bit was 1, so a 1 was shifted in on the left)

 Pass 1 is complete.

Example: Pass 2

 Current Product and previous LSB

 11111 01101 1

 Pass 2, Step 1: Examine the last 2 bits

 11111 01101 1

 The last two bits are 11, so we do NOT need to perform

an arithmetic action --

 just proceed to step 2.

Example: Pass 2 continued

 Pass 2, Step 2: ASR (arithmetic shift right)

 Before ASR

 11111 01101 1

 After ASR

 11111 10110 1

(left-most bit was 1, so a 1 was shifted in on the left)

 Pass 2 is complete.

Example: Pass 3

 Current Product and previous LSB

 11111 10110 1

 Pass 3, Step 1: Examine the last 2 bits

 11111 10110 1

 The last two bits are 01, so we need to:

 add the multiplicand to the left half of the product

Example: Pass 3 continued

 Pass 3, Step 1: Arithmetic action

(1) 11111 (left half of product)

 +00010 (mulitplicand)

 00001 (drop the leftmost carry)

 Place result into left half of product

 00001 10110 1

Example: Pass 3 continued

 Pass 3, Step 2: ASR (arithmetic shift right)

 Before ASR

 00001 10110 1

 After ASR

 00000 11011 0

(left-most bit was 0, so a 0 was shifted in on the left)

 Pass 3 is complete.

Example: Pass 4

 Current Product and previous LSB

 00000 11011 0

 Pass 4, Step 1: Examine the last 2 bits

 00000 11011 0

The last two bits are 10, so we need to:

 subtract the multiplicand from the left half of the product

Example: Pass 4 continued

 Pass 4, Step 1: Arithmetic action

(1) 00000 (left half of product)

 -00010 (mulitplicand)

 11110 (uses a phantom borrow)

 Place result into left half of product

 11110 11011 0

Example: Pass 4 continued

 Pass 4, Step 2: ASR (arithmetic shift right)

 Before ASR

 11110 11011 0

 After ASR

 11111 01101 1

(left-most bit was 1, so a 1 was shifted in on the left)

 Pass 4 is complete.

Example: Pass 5

 Current Product and previous LSB

 11111 01101 1

 Pass 5, Step 1: Examine the last 2 bits

 11111 01101 1

 The last two bits are 11, so we do NOT need to perform

an arithmetic action --

 just proceed to step 2.

Example: Pass 5 continued

 Pass 5, Step 2: ASR (arithmetic shift right)

 Before ASR

 11111 01101 1

 After ASR

 11111 10110 1

(left-most bit was 1, so a 1 was shifted in on the left)

 Pass 5 is complete.

Final Product

 We have completed 5 passes on the
5-bit operands, so we are done.

 Dropping the previous LSB, the
resulting final product is:

 11111 10110

Verification

 To confirm we have the correct answer,
convert the 2's complement final
product back to decimal.

 Final product: 11111 10110

 Decimal value: -10

 which is the CORRECT product of:

 (-5) x 2

