CSE 431
Computer Architecture
Fall 2005

Lecture 06: Basic MIPS Pipelining Review

Mary Jane Irwin ( www.cse.psu.edu/~mijl )

www.cse.psu.edu/~cg431

[Adapted from Computer Organization and Design,
Patterson & Hennessy, © 2005, UCB]

CSE431 L06 Basic MIPS Pipelining.1 Irwin, PSU, 2005


http://www.cse.psu.edu/~mji
http://www.cse.psu.edu/~

Review: Single Cycle vs. Multiple Cycle Timing

Single Cycle Implementation:

Clk

<
<

Cycle 1

v

a

Cycle 2

Y.

1w

SwW
multicycle clock
slower than 1/5" of

+—— single cycle clock

due to stage register

averhead :
Clk Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9Cyc|e 10
I |

| | | E |

: Waste

Multiple Cycle Implementation:

| | T
1w SW R-type
IFetchI Dec I Exec I Mem I WB f IFetchI Dec I Exec I Mem § IFetch

CSE431 L06 Basic MIPS Pipelining.2

Irwin, PSU, 2005



How Can We Make It Even Faster?

0 Split the multiple instruction cycle into smaller and
smaller steps

e There is a point of diminishing returns where as much time is
spent loading the state registers as doing the work

QO Start fetching and executing the next instruction before
the current one has completed

e Pipelining — (all?) modern processors are pipelined for
performance

e Remember the performance equation:
CPUtime =CPI*CC*IC

0 Fetch (and execute) more than one instruction at a time

e Superscalar processing — stay tuned

CSE431 L06 Basic MIPS Pipelining.3 Irwin, PSU, 2005



A Pipelined MIPS Processor

O Start the next instruction before the current one has
completed

e improves throughput - total amount of work done in a given time

e instruction latency (execution time, delay time, response time -
time from the start of an instruction to its completion) is not
reduced

iCycle 1 i Cycle 2i Cycle 3 Cycle 4iCycle 5iCycle 6 éCycIe 7 SCycle 8

[ I I I I
1w IFetch] Dec | Exec | Mem | ws
sw IFetch | Dec [ Exec [ Mem | we
R-type IFetch | Dec [ Exec [ mem | ws

- clock cycle (pipeline stage time) is limited by the slowest stage
- for some instructions, some stages are wasted cycles

CSE431 L06 Basic MIPS Pipelining.4 Irwin, PSU, 2005



Single Cycle, Multiple Cycle, vs. Pipeline

Single Cycle Implementation:

<
<

Clk

v
S

Cycle 1
I

Cycle 2

A 4
saVunnm

1w I

SW Waste

A

[
>

Multiple Cycle Implementation:

Cycle 1§Cycle 2§Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9;Cycle 10

clk | I I I I I I I I P
1w SW R-type
IFetchI Dec I Exec I Mem I WB I IFetchi Dec I Exec I Mem § IFetch

A

[
>

Pipeline Implementation:

IFetchI Dec I Exec I Mem I WB

1w

SW IFetchI Dec I Exec I Mem I WB

R-type IFetchI Dec I Exec I Mem I WB

CSE431 L06 Basic MIPS Pipelining.5 Irwin, PSU, 2005



MIPS Pipeline Datapath Modifications

0 What do we need to add/modify in our MIPS datapath?
e State registers between each pipeline stage to isolate them

IF:IFetch ID:Dec EX:Execute MEM: WB:
e emAccess  WriteBack
N

\ 4

4 _’/ >Add B
_>
Read Addr 1

— Inl\s/lterrl:]((:)t;0n ) Register Read| R Data
y % »Read Addr Patal fo c Memory
O Read O Fi < o)

> -—> . ile n S Read [ [m
Address vy »\Write Addr B >ALU Syddress =
= - Data | =
the; g me 5 . £
T —-[Write Data 3 Write Data Z

ﬁ?) \ |
‘16 \Extend /' *55

System Clock

CSE431 L06 Basic MIPS Pipelining.6

Irwin, PSU, 2005



Pipelining the MIPS ISA

2 What makes it easy

e all instructions are the same length (32 bits)
- can fetch in the 1st stage and decode in the 2" stage

e few instruction formats (three) with symmetry across formats
- can begin reading register file in 2"d stage

e memory operations can occur only in loads and stores
- can use the execute stage to calculate memory addresses

e each MIPS instruction writes at most one result (i.e.,
changes the machine state) and does so near the end of the
pipeline (MEM and WB)

20 What makes it hard

e structural hazards: what if we had only one memory?
e control hazards: what about branches?

e data hazards: what if an instruction’s input operands depend
on the output of a previous instruction?

CSE431 L06 Basic MIPS Pipelining.7 Irwin, PSU, 2005



Graphically Representing MIPS Pi

eline

Reg

a0 Can help with answering questions like:

_l%

DM

Reg

e How many cycles does it take to execute this code?

e What is the ALU doing during cycle 47

e Is there a hazard, why does it occur, and how can it be fixed?

CSE431 L06 Basic MIPS Pipelining.8

Irwin, PSU, 2005



Why Pipeline? For Performance!

Time (clock cycles)

i Once the
i pipeline is full,
i oneiinstruction
i iscompleted
. every cycle, so
: : CPI=1

Inst O IM

Inst 1

s~ N 5 -

Inst 2

Inst 3

E‘DM h,RegE
L N i
'E_I%E‘DM Reg

W(‘DQ_WO

Inst4 .

Timé to fillithe pipelineiiiiii:

CSE431 L06 Basic MIPS Pipelining.9 Irwin, PSU, 2005



Can Pipelining Get Us Into Trouble?

a Yes: Pipeline Hazards

e structural hazards: attempt to use the same resource by two
different instructions at the same time

e data hazards: attempt to use data before it is ready

- An instruction’s source operand(s) are produced by a prior
instruction still in the pipeline

e control hazards: attempt to make a decision about program
control flow before the condition has been evaluated and the
new PC target address calculated

- branch instructions

0 Can always resolve hazards by waiting
e pipeline control must detect the hazard
e and take action to resolve hazards

CSE431 L06 Basic MIPS Pipelining.10 Irwin, PSU, 2005



A Single Memory Would Be a Structural Hazard

Time (clock cycles)

lw t/\em J:Reg_%

Inst 1 t/\em I.[ Regg

éReading dafia from
imemory i

s~ N 5 -

5| [N

Inst 2 - iMem I

Inst 3

W(‘DQ_WO

Reg

Inst4  Reafling iristruction St"em ly
' fromi membry i : :

0 Fix with separate instr and data memories (I$ and D$)

CSE431 L06 Basic MIPS Pipelining.11 Irwin, PSU, 2005



How About Reqgister File Access?

Time (clock cycles)

N Fix réegisterfile
add $S1, |mm ;iReg;_%;‘DM - REf i dccessihazard by
: l/ ; : : dpbing reads in the

i N . secondihalf of the
Inst 1 IM FRegg—% E"J—l- Regy cycle arid writes in

t@e first half

T~ N S5 -

Inst 2 M iReg_%j
R

add $2,$1, IM I.E l;m’,mg

clock edge that controls clock edge that controls

register writing Ioac_jing of pipeline state
registers

‘DM | Regf

HCDQ_HO

CSE431 L06 Basic MIPS Pipelining.13 Irwin, PSU, 2005



Reqgister Usage Can Cause Data Hazards

0 Dependencies backward in time cause hazards

add $1,

sub $4,$1,85

and $6,51,$7

or $8,51,89

xor $4,51,$5

0 Reg| %'5

2%

[1m

Regf

APV |

| Regf

[1m

O Read before write data hazard

CSE431 L06 Basic MIPS Pipelining.15

E‘DM Reg

Irwin, PSU, 2005



T~ N S5 -

= 0O Q =

L oads Can Cause Data Hazards

0 Dependencies backward in time cause hazards

v $1,4(82) [ Jresf B

sub $4,$1,85 IM E.E

and $6,51,$7

or $8,51,89

xor $4,51,$5

a Load-use data hazard

CSE431 L06 Basic MIPS Pipelining.16

Regf

APV |

| Regf

Reg

Irwin, PSU, 2005




One Way to “Fix”’ a Data Hazard

add $1, IM

Can fixi data

i hazaxd

by

: waiting — stall —

Regf

|
n
S
t | stall
r.
o[ stall
r
d
el sub $4,51,$5
r

and $6,51,87

CSE431 L06 Basic MIPS Pipelining.17

i but impacts CPI

Reg

Irwin, PSU,

2005




Another Way to “Fix” a Data Hazard

Fix data hazards

| add $1, IM
n

S

tl sub $4,51,$5
r.
@)

rl and $6,$1,87
d

e

r

or $8,51,89

xor $4,51,$5

CSE431 L06 Basic MIPS Pipelining.19

by forwardlng

results as soon as

they are available

. 10 where they are

needed
|Regf
‘DM Regé
Z E‘DM E._ Reg

Irwin, PSU, 2005



Forwarding with Load-use Data Hazards

1w $1,4(52)
n
.| sub $4,%1,$5
I.
ol and $6,$1,87
r
d
el or $8,51,$9
;

xor $4,51,$5

Regé_%é

]

Reg|

DM

DM

Regf

-

{Regf

Reg

a Will still need one stall cycle even with forwarding

CSE431 L06 Basic MIPS Pipelining.21

Irwin, PSU, 2005



Branch Instructions Cause Control Hazards

0 Dependencies backward in time cause hazards

beq

1w

s~ N 5 -

Inst 3

Inst 4

W(‘DQ_WO

CSE431 L06 Basic MIPS Pipelining.22

Irwin, PSU, 2005



One Way to “Fix” a Control Hazard

beq

stall

s~ N 5 -

stall

stall

HCDQ_HO

lw

Inst 3

A\ 4

CSE431 L06 Basic MIPS Pipelining.23

iFix branch |
: hazatd by :
: waiting — :
: stall + but :
affect§ CPI :

Him

Irwin, PSU, 2005



Corrected Datapath to Save RegWrite Addr

0 Need to preserve the destination register address In
the pipeline state registers
e

-
<

N

\ 4

\ IF/ID ID/EX EX/MEM
>Add >
4 / Add MEM/WB
—>
Read Addr 1

B Instruction > Register Read| | : Data
Memory »Read Addr Pata 1 Memory
O Read Ei
>o — ile > al Read |_|
Address »\Write Addr Read ALU -pAddress Data
o —-[Write Data Data 2 ] Write Data

Sign \ H
\16 Extend ‘32

— — L]

CSE431 L06 Basic MIPS Pipelining.25 Irwin, PSU, 2005



MIPS Pi

eline Control Path Modifications

0 All control signals can be determined during Decode
e and held in the state registers between pipeline stages

-
<
-
<

ID/EX

Control\F_

!

EX/IMEM

‘\ IF/ID
Y Add >
4 ‘/ v . Add
) » Read Addr 1
Inl\s/ltructlon Register Read| | >
emory »Read Addr 2ata 1
O Read Fi
Ol - ile
Address »\Wri
»\Write Addr Read| |
_ Data 2
—-[erte Data

>ALU

\ A 4

I~

v

—

- e=ptAddress

Data
Memory

Read
Data

Write Data

—

Sign \
\16 Extend ‘32

}

-

CSE431 L06 Basic MIPS Pipelining.26

Irwin, PSU, 2005



Other Pipeline Structures Are Possible

0 What about the (slow) multiply operation?
e Make the clock twice as slow or ...
e |let it take two cycles (since it doesn’t use the DM stage)

1 MuL —‘

M [ Reg % ‘DM Reg

0 What if the data memory access is twice as slow as
the instruction memory?

e make the clock twice as slow or ...
e |let data memory access take two cycles (and keep the same

clock rate)
IM _[Reg_%_«mvll pm2l{Reg

CSE431 L06 Basic MIPS Pipelining.27 Irwin, PSU, 2005




Sample Pipeline Alternatives
a ARMY IM O Reg[ ]

EX

PC update decode ALU op
IM access reg DM access
access shift/rotate
commit result
(write back)

0 StrongARM-1 |M HReg = ‘DM Reg

P

0 XScale im1 | im2 | Reg SHF7|_ ) |pm1|.JRed
(C DMZ
PC update decode DM write
BTB access reg 1 access ALU op reg write
start IM access _
shift/rotate start DM access
IM access reg 2 access exception

CSE431 L06 Basic MIPS Pipelining.28 Irwin, PSU, 2005



Summary

0 All modern day processors use pipelining

0 Pipelining doesn’t help latency of single task, it helps
throughput of entire workload

0 Potential speedup: a CPl of 1 and fasta CC
0 Pipeline rate limited by slowest pipeline stage

e Unbalanced pipe stages makes for inefficiencies

e The time to “fill” pipeline and time to “drain” it can impact
speedup for deep pipelines and short code runs

0 Must detect and resolve hazards

e Stalling negatively affects CPI (makes CPI less than the ideal
of 1)

CSE431 L06 Basic MIPS Pipelining.29 Irwin, PSU, 2005



Next Lecture and Reminders

O Next lecture

e Overcoming data hazards
- Reading assignment — PH, Chapter 6.4-6.5

0 Reminders
e HW2 due September 29t

e SimpleScalar tutorials scheduled
- Thursday, Sept 22, 5:30-6:30 pm in 218 IST

e Evening midterm exam scheduled
- Tuesday, October 181, 20:15 to 22:15, Location 113 IST
- You should have let me know by now if you have a conflict

CSE431 L06 Basic MIPS Pipelining.30 Irwin, PSU, 2005



