
CSE431  L06 Basic MIPS Pipelining.1 Irwin, PSU, 2005 

CSE 431 
 Computer Architecture  

Fall 2005 
 

Lecture 06: Basic MIPS Pipelining Review 

Mary Jane Irwin ( www.cse.psu.edu/~mji )  

www.cse.psu.edu/~cg431  

 
[Adapted from Computer Organization and Design,   

Patterson & Hennessy, © 2005, UCB] 

http://www.cse.psu.edu/~mji
http://www.cse.psu.edu/~


CSE431  L06 Basic MIPS Pipelining.2 Irwin, PSU, 2005 

Review:  Single Cycle vs. Multiple Cycle Timing 

Clk Cycle 1 

Multiple Cycle Implementation: 

IFetch Dec Exec Mem WB 

Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10 

IFetch Dec Exec Mem 

lw sw 

IFetch 

R-type 

Clk 

Single Cycle Implementation: 

lw sw Waste 

Cycle 1 Cycle 2 

multicycle clock 

slower than 1/5th of 

single cycle clock 

due to stage register 

overhead 



CSE431  L06 Basic MIPS Pipelining.3 Irwin, PSU, 2005 

How Can We Make It Even Faster? 

 Split the multiple instruction cycle into smaller and 

smaller steps 

 There is a point of diminishing returns where as much time is 

spent loading the state registers as doing the work 

 Start fetching and executing the next instruction before 

the current one has completed 

 Pipelining – (all?) modern processors are pipelined for 

performance 

 Remember the performance equation:                                              

     CPU time = CPI * CC * IC 

 Fetch (and execute) more than one instruction at a time 

 Superscalar processing – stay tuned 



CSE431  L06 Basic MIPS Pipelining.4 Irwin, PSU, 2005 

A Pipelined MIPS Processor 

 Start the next instruction before the current one has 
completed 

 improves throughput - total amount of work done in a given time 

 instruction latency (execution time, delay time, response time - 
time from the start of an instruction to its completion) is not 
reduced 

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 

IFetch Dec Exec Mem WB lw 

Cycle 7 Cycle 6 Cycle 8 

sw IFetch Dec Exec Mem WB 

R-type IFetch Dec Exec Mem WB 

- clock cycle (pipeline stage time) is limited by the slowest stage 

- for some instructions, some stages are wasted cycles 



CSE431  L06 Basic MIPS Pipelining.5 Irwin, PSU, 2005 

Single Cycle, Multiple Cycle, vs. Pipeline 

Multiple Cycle Implementation: 

Clk 

Cycle 1 

IFetch Dec Exec Mem WB 

Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10 

IFetch Dec Exec Mem 

lw sw 

IFetch 

R-type 

lw IFetch Dec Exec Mem WB 

Pipeline Implementation: 

IFetch Dec Exec Mem WB sw 

IFetch Dec Exec Mem WB R-type 

Clk 

Single Cycle Implementation: 

lw sw Waste 

Cycle 1 Cycle 2 



CSE431  L06 Basic MIPS Pipelining.6 Irwin, PSU, 2005 

MIPS Pipeline Datapath Modifications 
 What do we need to add/modify in our MIPS datapath? 

 State registers between each pipeline stage to isolate them 

Read 

Address 

Instruction 

Memory 

Add 

P
C

 

4 

Write Data 

Read Addr 1 

Read Addr 2 

Write Addr 

Register 

 

File 

Read 

 Data 1 

Read 

 Data 2 

16 32 

ALU 

Shift 

left 2 

Add 

Data 

Memory 

Address 

Write Data 

Read 

Data IF
e

tc
h

/D
e

c
 

D
e
c

/E
x

e
c

 

E
x

e
c

/M
e
m

 

M
e

m
/W

B
 

IF:IFetch ID:Dec EX:Execute MEM: 

MemAccess 

WB: 

WriteBack 

System Clock 

Sign 

Extend 



CSE431  L06 Basic MIPS Pipelining.7 Irwin, PSU, 2005 

Pipelining the MIPS ISA 

 What makes it easy 
 all instructions are the same length (32 bits) 

- can fetch in the 1st stage and decode in the 2nd stage 

 few instruction formats (three) with symmetry across formats 

- can begin reading register file in 2nd stage 

 memory operations can occur only in loads and stores 

- can use the execute stage to calculate memory addresses 

 each MIPS instruction writes at most one result (i.e., 

changes the machine state) and does so near the end of the 

pipeline (MEM and WB) 

 What makes it hard 
 structural hazards:   what if we had only one memory? 

 control hazards:  what about branches? 

 data hazards:  what if an instruction’s input operands depend 

on the output of a previous instruction? 



CSE431  L06 Basic MIPS Pipelining.8 Irwin, PSU, 2005 

Graphically Representing MIPS Pipeline 

 
 
 
 
 
 
 

 Can help with answering questions like: 

 How many cycles does it take to execute this code? 

 What is the ALU doing during cycle 4? 

 Is there a hazard, why does it occur, and how can it be fixed? 
A

L
U

 

IM Reg DM Reg 



CSE431  L06 Basic MIPS Pipelining.9 Irwin, PSU, 2005 

Why Pipeline? For Performance! 

I 

n 

s 

t 

r. 

 

O 

r 

d 

e 

r 

Time (clock cycles) 

Inst 0 

Inst 1 

Inst 2 

Inst 4 

Inst 3 

A
L

U
 

IM Reg DM Reg 

A
L

U
 

IM Reg DM Reg 

A
L

U
 

IM Reg DM Reg 

A
L

U
 

IM Reg DM Reg 

A
L

U
 

IM Reg DM Reg 

Once the 

pipeline is full, 

one instruction 

is completed 

every cycle, so 

CPI = 1 

Time to fill the pipeline 



CSE431  L06 Basic MIPS Pipelining.10 Irwin, PSU, 2005 

Can Pipelining Get Us Into Trouble? 

 Yes:  Pipeline Hazards 

 structural hazards: attempt to use the same resource by two 

different instructions at the same time 

 data hazards: attempt to use data before it is ready 

- An instruction’s source operand(s) are produced by a prior 

instruction still in the pipeline 

 control hazards: attempt to make a decision about program 

control flow before the condition has been evaluated and the 

new PC target address calculated 

- branch instructions 

 Can always resolve hazards by waiting 

 pipeline control must detect the hazard 

 and take action to resolve hazards 



CSE431  L06 Basic MIPS Pipelining.11 Irwin, PSU, 2005 

I 

n 

s 

t 

r. 

 

O 

r 

d 

e 

r 

Time (clock cycles) 

lw 

Inst 1 

Inst 2 

Inst 4 

Inst 3 

A
L

U
 

Mem Reg Mem Reg 

A
L

U
 

Mem Reg Mem Reg 

A
L

U
 

Mem Reg Mem Reg 

A
L

U
 

Mem Reg Mem Reg 

A
L

U
 

Mem Reg Mem Reg 

A Single Memory Would Be a Structural Hazard 

Reading data from 

memory 

Reading instruction 

from memory 

 Fix with separate instr and data memories (I$ and D$) 



CSE431  L06 Basic MIPS Pipelining.13 Irwin, PSU, 2005 

How About Register File Access? 

I 

n 

s 

t 

r. 

 

O 

r 

d 

e 

r 

Time (clock cycles) 

Inst 1 

Inst 2 

A
L

U
 

IM Reg DM Reg 

A
L

U
 

IM Reg DM Reg 

A
L

U
 

IM Reg DM Reg 

A
L

U
 

IM Reg DM Reg 

Fix register file 

access hazard by 

doing reads in the 

second half of the 

cycle and writes in 

the first half 

add $1, 

add $2,$1, 

clock edge that controls 

register writing 

clock edge that controls 

loading of pipeline state 

registers 



CSE431  L06 Basic MIPS Pipelining.15 Irwin, PSU, 2005 

Register Usage Can Cause Data Hazards 

A
L

U
 

IM Reg DM Reg 

A
L

U
 

IM Reg DM Reg 

A
L

U
 

IM Reg DM Reg 

A
L

U
 

IM Reg DM Reg 

A
L

U
 

IM Reg DM Reg 

 Dependencies backward in time cause hazards 

add $1, 

sub $4,$1,$5 

and $6,$1,$7 

xor $4,$1,$5 

or  $8,$1,$9 

 Read before write data hazard 



CSE431  L06 Basic MIPS Pipelining.16 Irwin, PSU, 2005 

Loads Can Cause Data Hazards 

I 

n 

s 

t 

r. 

 

O 

r 

d 

e 

r 

lw  $1,4($2) 

sub $4,$1,$5 

and $6,$1,$7 

xor $4,$1,$5 

or  $8,$1,$9 
A

L
U

 

IM Reg DM Reg 

A
L

U
 

IM Reg DM Reg 

A
L

U
 

IM Reg DM Reg 

A
L

U
 

IM Reg DM Reg 

A
L

U
 

IM Reg DM Reg 

 Dependencies backward in time cause hazards 

 Load-use data hazard 



CSE431  L06 Basic MIPS Pipelining.17 Irwin, PSU, 2005 

stall 

stall 

One Way to “Fix” a Data Hazard 

I 

n 

s 

t 

r. 

 

O 

r 

d 

e 

r 

add $1, 

A
L

U
 

IM Reg DM Reg 

sub $4,$1,$5 

and $6,$1,$7 

A
L

U
 

IM Reg DM Reg 

A
L

U
 

IM Reg DM Reg 

Can fix data 

hazard by 

waiting – stall – 

but impacts CPI 



CSE431  L06 Basic MIPS Pipelining.19 Irwin, PSU, 2005 

Another Way to “Fix” a Data Hazard 

A
L

U
 

IM Reg DM Reg 

A
L

U
 

IM Reg DM Reg 

A
L

U
 

IM Reg DM Reg 

Fix data hazards 

by forwarding 

results as soon as 

they are available 

to where they are 

needed 
A

L
U

 

IM Reg DM Reg 

A
L

U
 

IM Reg DM Reg 

I 

n 

s 

t 

r. 

 

O 

r 

d 

e 

r 

add $1, 

sub $4,$1,$5 

and $6,$1,$7 

xor $4,$1,$5 

or  $8,$1,$9 



CSE431  L06 Basic MIPS Pipelining.21 Irwin, PSU, 2005 

Forwarding with Load-use Data Hazards 

A
L

U
 

IM Reg DM Reg 

A
L

U
 

IM Reg DM Reg 

A
L

U
 

IM Reg DM Reg 

A
L

U
 

IM Reg DM Reg 

A
L

U
 

IM Reg DM Reg 

 Will still need one stall cycle even with forwarding 

I 

n 

s 

t 

r. 

 

O 

r 

d 

e 

r 

lw  $1,4($2) 

sub $4,$1,$5 

and $6,$1,$7 

xor $4,$1,$5 

or  $8,$1,$9 



CSE431  L06 Basic MIPS Pipelining.22 Irwin, PSU, 2005 

Branch Instructions Cause Control Hazards 

I 

n 

s 

t 

r. 

 

O 

r 

d 

e 

r 

lw 

Inst 4 

Inst 3 

beq 

A
L

U
 

IM Reg DM Reg 

A
L

U
 

IM Reg DM Reg 

A
L

U
 

IM Reg DM Reg 

A
L

U
 

IM Reg DM Reg 

 Dependencies backward in time cause hazards 



CSE431  L06 Basic MIPS Pipelining.23 Irwin, PSU, 2005 

stall 

stall 

stall 

One Way to “Fix” a Control Hazard 

I 

n 

s 

t 

r. 

 

O 

r 

d 

e 

r 

beq 

A
L

U
 

IM Reg DM Reg 

lw 

A
L

U
 

IM Reg DM Reg 

A
L

U
  Inst 3 

IM Reg DM 

Fix branch 

hazard by 

waiting – 

stall – but 

affects CPI 



CSE431  L06 Basic MIPS Pipelining.25 Irwin, PSU, 2005 

Corrected Datapath to Save RegWrite Addr 
 Need to preserve the destination register address in 

the pipeline state registers 

Read 

Address 

Instruction 

Memory 

Add 

P
C

 

4 

Write Data 

Read Addr 1 

Read Addr 2 

Write Addr 

Register 

 

File 

Read 

 Data 1 

Read 

 Data 2 

16 32 

ALU 

Shift 

left 2 

Add 

Data 

Memory 

Address 

Write Data 

Read 

Data 

IF/ID 

Sign 

Extend 

ID/EX EX/MEM 

MEM/WB 



CSE431  L06 Basic MIPS Pipelining.26 Irwin, PSU, 2005 

MIPS Pipeline Control Path Modifications 
 All control signals can be determined during Decode 

 and held in the state registers between pipeline stages 

Read 

Address 

Instruction 

Memory 

Add 

P
C

 

4 

Write Data 

Read Addr 1 

Read Addr 2 

Write Addr 

Register 

 

File 

Read 

 Data 1 

Read 

 Data 2 

16 32 

ALU 

Shift 

left 2 

Add 

Data 

Memory 

Address 

Write Data 

Read 

Data 

IF/ID 

Sign 

Extend 

ID/EX 

EX/MEM 

MEM/WB 

Control 



CSE431  L06 Basic MIPS Pipelining.27 Irwin, PSU, 2005 

Other Pipeline Structures Are Possible 

 What about the (slow) multiply operation? 

 Make the clock twice as slow or … 

 let it take two cycles (since it doesn’t use the DM stage) 

 

A
L

U
 

IM Reg DM Reg 

MUL 

A
L

U
 

IM Reg DM1 Reg DM2 

 What if the data memory access is twice as slow as 
the instruction memory? 

 make the clock twice as slow or … 

 let data memory access take two cycles (and keep the same 
clock rate) 



CSE431  L06 Basic MIPS Pipelining.28 Irwin, PSU, 2005 

Sample Pipeline Alternatives 

 ARM7 

 

 

 

 

 StrongARM-1 

 

 

 XScale 

A
L

U
 

IM1 IM2 DM1 Reg 

DM2 

IM Reg EX 

PC update 

IM access 

decode 

reg 

   access 

ALU op 

DM access 

shift/rotate 

commit result 

   (write back) 

A
L

U
 

IM Reg DM Reg 

Reg SHFT 

PC update 

BTB access 

start IM access 

IM access 

decode 

reg 1 access 

shift/rotate 

reg 2 access 

ALU op 

start DM access 

exception 

DM write 

reg write 



CSE431  L06 Basic MIPS Pipelining.29 Irwin, PSU, 2005 

Summary 

 All modern day processors use pipelining 

 Pipelining doesn’t help latency of single task, it helps 

throughput of entire workload 

 Potential speedup:  a CPI of 1 and fast a CC 

 Pipeline rate limited by slowest pipeline stage 

 Unbalanced pipe stages makes for inefficiencies 

 The time to “fill” pipeline and time to “drain” it can impact 

speedup for deep pipelines and short code runs 

 Must detect and resolve hazards 

 Stalling negatively affects CPI (makes CPI less than the ideal 

of 1) 



CSE431  L06 Basic MIPS Pipelining.30 Irwin, PSU, 2005 

Next Lecture and Reminders 

 Next lecture 

 Overcoming data hazards 

- Reading assignment – PH, Chapter 6.4-6.5 

 

 Reminders 

 HW2 due September 29th  

 SimpleScalar tutorials scheduled 

- Thursday, Sept 22, 5:30-6:30 pm in 218 IST 

 

 Evening midterm exam scheduled 

- Tuesday, October 18th , 20:15 to 22:15, Location 113 IST 

- You should have let me know by now if you have a conflict 


