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Review: Single Cycle vs. Multiple Cycle Timing

Single Cycle Implementation:
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How Can We Make It Even Faster?

0 Split the multiple instruction cycle into smaller and
smaller steps

e There is a point of diminishing returns where as much time is
spent loading the state registers as doing the work

QO Start fetching and executing the next instruction before
the current one has completed

e Pipelining — (all?) modern processors are pipelined for
performance

e Remember the performance equation:
CPUtime =CPI*CC*IC

0 Fetch (and execute) more than one instruction at a time

e Superscalar processing — stay tuned
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A Pipelined MIPS Processor

O Start the next instruction before the current one has
completed

e improves throughput - total amount of work done in a given time

e instruction latency (execution time, delay time, response time -
time from the start of an instruction to its completion) is not
reduced

iCycle 1 i Cycle 2i Cycle 3 Cycle 4iCycle 5iCycle 6 éCycIe 7 SCycle 8
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- clock cycle (pipeline stage time) is limited by the slowest stage
- for some instructions, some stages are wasted cycles
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Single Cycle, Multiple Cycle, vs. Pipeline

Single Cycle Implementation:
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Multiple Cycle Implementation:
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Pipeline Implementation:
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MIPS Pipeline Datapath Modifications

0 What do we need to add/modify in our MIPS datapath?
e State registers between each pipeline stage to isolate them
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Pipelining the MIPS ISA

2 What makes it easy

e all instructions are the same length (32 bits)
- can fetch in the 1st stage and decode in the 2" stage

e few instruction formats (three) with symmetry across formats
- can begin reading register file in 2"d stage

e memory operations can occur only in loads and stores
- can use the execute stage to calculate memory addresses

e each MIPS instruction writes at most one result (i.e.,
changes the machine state) and does so near the end of the
pipeline (MEM and WB)

20 What makes it hard

e structural hazards: what if we had only one memory?
e control hazards: what about branches?

e data hazards: what if an instruction’s input operands depend
on the output of a previous instruction?
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Graphically Representing MIPS Pi

eline
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a0 Can help with answering questions like:
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e How many cycles does it take to execute this code?

e What is the ALU doing during cycle 47

e Is there a hazard, why does it occur, and how can it be fixed?
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Why Pipeline? For Performance!

Time (clock cycles)

i Once the
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Can Pipelining Get Us Into Trouble?

a Yes: Pipeline Hazards

e structural hazards: attempt to use the same resource by two
different instructions at the same time

e data hazards: attempt to use data before it is ready

- An instruction’s source operand(s) are produced by a prior
instruction still in the pipeline

e control hazards: attempt to make a decision about program
control flow before the condition has been evaluated and the
new PC target address calculated

- branch instructions

0 Can always resolve hazards by waiting
e pipeline control must detect the hazard
e and take action to resolve hazards
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A Single Memory Would Be a Structural Hazard

Time (clock cycles)
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0 Fix with separate instr and data memories (I$ and D$)
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How About Reqgister File Access?

Time (clock cycles)
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Reqgister Usage Can Cause Data Hazards

0 Dependencies backward in time cause hazards

add $1,

sub $4,$1,85

and $6,51,$7

or $8,51,89

xor $4,51,$5
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O Read before write data hazard
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T~ N S5 -
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L oads Can Cause Data Hazards

0 Dependencies backward in time cause hazards

v $1,4(82) [ Jresf B

sub $4,$1,85 IM E.E

and $6,51,$7

or $8,51,89

xor $4,51,$5

a Load-use data hazard
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One Way to “Fix”’ a Data Hazard

add $1, IM

Can fixi data
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Another Way to “Fix” a Data Hazard

Fix data hazards

| add $1, IM
n

S

tl sub $4,51,$5
r.
@)

rl and $6,$1,87
d

e

r

or $8,51,89

xor $4,51,$5
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Forwarding with Load-use Data Hazards

1w $1,4(52)
n
.| sub $4,%1,$5
I.
ol and $6,$1,87
r
d
el or $8,51,$9
;

xor $4,51,$5

Regé_%é

]

Reg|

DM

DM

Regf

-

{Regf

Reg

a Will still need one stall cycle even with forwarding
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Branch Instructions Cause Control Hazards

0 Dependencies backward in time cause hazards
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One Way to “Fix” a Control Hazard
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Corrected Datapath to Save RegWrite Addr

0 Need to preserve the destination register address In
the pipeline state registers
e
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MIPS Pi

eline Control Path Modifications

0 All control signals can be determined during Decode
e and held in the state registers between pipeline stages
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Other Pipeline Structures Are Possible

0 What about the (slow) multiply operation?
e Make the clock twice as slow or ...
e |let it take two cycles (since it doesn’t use the DM stage)

1 MuL —‘

M [ Reg % ‘DM Reg

0 What if the data memory access is twice as slow as
the instruction memory?

e make the clock twice as slow or ...
e |let data memory access take two cycles (and keep the same

clock rate)
IM _[Reg_%_«mvll pm2l{Reg
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Sample Pipeline Alternatives
a ARMY IM O Reg[ ]

EX

PC update decode ALU op
IM access reg DM access
access shift/rotate
commit result
(write back)

0 StrongARM-1 |M HReg = ‘DM Reg

P

0 XScale im1 | im2 | Reg SHF7|_ ) |pm1|.JRed
(C DMZ
PC update decode DM write
BTB access reg 1 access ALU op reg write
start IM access _
shift/rotate start DM access
IM access reg 2 access exception
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Summary

0 All modern day processors use pipelining

0 Pipelining doesn’t help latency of single task, it helps
throughput of entire workload

0 Potential speedup: a CPl of 1 and fasta CC
0 Pipeline rate limited by slowest pipeline stage

e Unbalanced pipe stages makes for inefficiencies

e The time to “fill” pipeline and time to “drain” it can impact
speedup for deep pipelines and short code runs

0 Must detect and resolve hazards

e Stalling negatively affects CPI (makes CPI less than the ideal
of 1)
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Next Lecture and Reminders

O Next lecture

e Overcoming data hazards
- Reading assignment — PH, Chapter 6.4-6.5

0 Reminders
e HW2 due September 29t

e SimpleScalar tutorials scheduled
- Thursday, Sept 22, 5:30-6:30 pm in 218 IST

e Evening midterm exam scheduled
- Tuesday, October 181, 20:15 to 22:15, Location 113 IST
- You should have let me know by now if you have a conflict
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