Chapter 5: Computer Systems
Organization

Invitation to Computer Science,
C++ Version, Third Edition

Objectives

In this chapter, you will learn about:
The components of a computer system

Putting all the pieces together — the Von
Neumann architecture

The future: non-Von Neumann architectures

Invitation to Computer Science, C++ Version, Third Edition

Introduction

Computer organization examines the computer
as a collection of interacting “functional units”

Functional units may be built out of the circuits
already studied

Higher level of abstraction assists in
understanding by reducing complexity

Invitation to Computer Science, C++ Version, Third Edition

System S

Figure 5.1 o = -
The Concept of Abstraction \ /

as —— Qg

a, ay Qg
[a) Most detailed system view

L] a3 az

as g
az Qa L]
A B o
(b) Grouping components
System S
A B C

(c) Higherlevel system view

(d) Highestlevel system view

Invitation to Computer Science, C++ Version, Third Edition 4

The Components of a Computer
System

Von Neumann architecture has four functional
units:

o Memory

o Input/Output

o Arithmetic/Logic unit
o Control unit

Sequential execution of instructions
Stored program concept

Invitation to Computer Science, C++ Version, Third Edition

Memory Control unit Input-Output

ALU

Processor

Figure 5.2
Components of the Von Neumann Architecture

Invitation to Computer Science, C++ Version, Third Edition

Memory and Cache

Information stored and fetched from memory
subsystem

Random Access Memory maps addresses to
memory locations

Cache memory keeps values currently in use In
faster memory to speed access times

Invitation to Computer Science, C++ Version, Third Edition

Memory and Cache (continued)

RAM (Random Access Memory)

2 Memory made of addressable “cells”

o Current standard cell size is 8 bits

o All memory cells accessed in equal time

o Memory address
Unsigned binary number N long

Address space is then 2N cells

Invitation to Computer Science, C++ Version, Third Edition

Address Memory

/] bit

0] “o Ve One memory cell

1 N bits

2 —~ MAR |—
Maximum memory size{ 3 Memory address register

~4—p| MDR |t—

Memory data register

2N -1 , :
b W or a multiple of W bits
Memor'y width
(W)
Figure 5.3

Structure of Random Access Memory

Invitation to Computer Science, C++ Version, Third Edition

Memory and Cache (continued)

Parts of the memory subsystem

o Fetch/store controller

Fetch: retrieve a value from memory

Store: store a value into memory

o Memory address register (MAR)
o Memory data register (MDR)

2 Memory cells, with decoder(s) to select individual
cells

Invitation to Computer Science, C++ Version, Third Edition

10

Memory and Cache (continued)

Fetch operation

o The address of the desired memory cell is moved
iInto the MAR

o Fetch/store controller signals a “fetch,” accessing
the memory cell

o The value at the MAR’s location flows into the
MDR

Invitation to Computer Science, C++ Version, Third Edition 11

Memory and Cache (continued)

Store operation

o The address of the cell where the value should go
Is placed in the MAR

o The new value is placed in the MDR

o Fetch/store controller signals a “store,” copying
the MDR’s value into the desired cell

Invitation to Computer Science, C++ Version, Third Edition 12

Memory and Cache (continued)

Memory register

o Very fast memory location

o Given a name, not an address
o Serves some special purpose

o Modern computers have dozens or hundreds of
registers

Invitation to Computer Science, C++ Version, Third Edition

13

s Memory unit r——

N/2 bits N/2 bits

d d d e -) d d d AT - MAR (N bits)

BNES

000 --- 011
B Column decoder
a circuit 000 --- 010
8 000 --- 001 -
- R 000 --- 000
<]
£ Y Yy ¥
a 000 --- 000 -
£ 000 :-:- 001 =
2 000 --- 010 A 2N memory cells
ircui Y- organized info a
Row decoder circuit 000 o111 = | SN2 2 IN/2 square
. as shown in
- Figure 5.6
MDR l<—> Fetch/store controller }<

A

Some mulﬁp;le of W bits

k 775 signal Figure 5.7

(specifying whether to do

a fetch or a store operation) Overall RAM QOrganization

Invitation to Computer Science, C++ Version, Third Edition 14

Cache Memory

Memory access is much slower than processing
time

Faster memory Is too expensive to use for all
memory cells

Locality principle

o Once a value is used, it is likely to be used again

Small size, fast memory just for values currently
IN use speeds computing time

Invitation to Computer Science, C++ Version, Third Edition 15

Input/Output and Mass Storage

Communication with outside world and external
data storage

o Human interfaces: monitor, keyboard, mouse

o Archival storage: not dependent on constant
power

External devices vary tremendously from each
other

Invitation to Computer Science, C++ Version, Third Edition 16

Input/Output and Mass Storage
(continued)

Volatile storage

o Information disappears when the power is turned
off

o Example: RAM
Nonvolatile storage

o Information does not disappear when the power is
turned off

o Example: mass storage devices such as disks
and tapes

Invitation to Computer Science, C++ Version, Third Edition 17

Input/Output and Mass Storage
(continued)

Mass storage devices

o Direct access storage device

Hard drive, CD-ROM, DVD, etc.

Uses its own addressing scheme to access data
0 Sequential access storage device

Tape drive, etc.

Stores data sequentially

Used for backup storage these days

Invitation to Computer Science, C++ Version, Third Edition

18

Input/Output and Mass Storage
(continued)

Direct access storage devices
o Data stored on a spinning disk
o Disk divided into concentric rings (sectors)

o Read/write head moves from one ring to another
while disk spins

o Access time depends on:
Time to move head to correct sector
Time for sector to spin to data location

Invitation to Computer Science, C++ Version, Third Edition 19

Read/Write
head

Track

C2

Rotation

Figure 5.8
Overall Organization of a Typical Disk

Invitation to Computer Science, C++ Version, Third Edition

20

Input/Output and Mass Storage
(continued)

/O controller

o Intermediary between central processor and 1/O
devices

o Processor sends request and data, then goes on
with its work

o 1/O controller interrupts processor when request Is
complete

Invitation to Computer Science, C++ Version, Third Edition 21

Interrupt signal (completion)

—

Processor Memory I/O buffer

/O controller

Control/Logic

/O device

Figure 5.9
Organization of an I/O Controller

Invitation to Computer Science, C++ Version, Third Edition 22

The Arithmetic/Logic Unit

Actual computations are performed

Primitive operation circuits

o Arithmetic (ADD, etc.)

o Comparison (CE, etc.)

o Logic (AND, etc.)

Data inputs and results stored in registers

Multiplexor selects desired output

Invitation to Computer Science, C++ Version, Third Edition

23

The Arithmetic/Logic Unit (continued)

ALU process

o Values for operations copied into ALU’s input
register locations

o All circuits compute results for those inputs

o Multiplexor selects the one desired result from all
values

o Result value copied to desired result register

Invitation to Computer Science, C++ Version, Third Edition 24

ALU
* > Uk | line O
* > (00)
(NS |
* > Line 1
a I b ’ . . . :
? " (01) .. Multiplexor circuit - » Output
—
* > | Line 2 A A
a=b
T = | (10)
* = g b Line 3
* > (11)
— Selector lines
Figure 5.12

Using a Multiplexor Circuit to Select the Proper ALU Result

Invitation to Computer Science, C++ Version, Third Edition 25

The Control Unit

Manages stored program execution

Task

o Fetch from memory the next instruction to be
executed

o Decode it: determine what is to be done

o Execute it: iIssue appropriate command to ALU,
memory, and I/O controllers

Invitation to Computer Science, C++ Version, Third Edition 26

Machine LLanguage Instructions

Can be decoded and executed by control unit

Parts of instructions

o Operation code (op code)

Unigue unsigned-integer code assigned to each
machine language operation

o Address field(s)

Memory addresses of the values on which
operation will work

Invitation to Computer Science, C++ Version, Third Edition 27

Operation code ~ Address field | Address field 2

Figure 5.14
Typical Machine Language Instruction Format

Invitation to Computer Science, C++ Version, Third Edition

28

Machine Language Instructions
(continued)

Operations of machine language
o Data transfer
Move values to and from memory and registers

o Arithmetic/logic

Perform ALU operations that produce numeric
values

Invitation to Computer Science, C++ Version, Third Edition

29

Machine Language Instructions
(continued)

Operations of machine language (continued)
o Compares
Set bits of compare register to hold result

o Branches

Jump to a new memory address to continue
processing

Invitation to Computer Science, C++ Version, Third Edition 30

Control Unit Registers And Circuits

Parts of control unit
o Links to other subsystems
o Instruction decoder circuit

o Two special registers:

Program Counter (PC)

0 Stores the memory address of the next instruction to
be executed

Instruction Register (IR)
0 Stores the code for the current instruction

Invitation to Computer Science, C++ Version, Third Edition

31

3us

T T

PC Op code Address field(s) IR

Signals to memory,

Instruction decoder circuit : ALU, 1/O controllers,
¢ and other components

vy

Figure 5.16
Organization of the Control Unit Registers and Circuits

Invitation to Computer Science, C++ Version, Third Edition 32

Putting All the Pieces Together—the

Von Neumann Architecture

Subsystems connected by a bus

o Bus: wires that permit data transfer among them

At this level, ignore the detalls of circuits that
perform these tasks: Abstraction!

Computer repeats fetch-decode-execute cycle
iIndefinitely

Invitation to Computer Science, C++ Version, Third Edition 33

-

Memory unit

-y X =

Arithmetic/Logic unit | Input/Output

-

Control unit

—

Bus
- - - . - < .
I L T, | I
ey § controller
& RI Lol
F/s 1 l
signal %
®) | Instruction
Me e A SE ¢ decoder
dec'gg?rl Fetch/Store circuit gongg
et controller o | 176 denice g
oy - MBS
Y v
ALU -

Random access memory

Selector lines

GT EQ T

Condition code register

Figure 5.18

The Organization
of a Von Neumann

Computer

Invitation to Computer Science, C++ Version, Third Edition

34

The Future: Non-Von Neumann
Architectures

Physical limitations on speed of Von Neumann
computers

Non-Von Neumann architectures explored to
bypass these limitations

Parallel computing architectures can provide
Improvements: multiple operations occur at the
same time

Invitation to Computer Science, C++ Version, Third Edition

35

The Future: Non-Von Neumann
Architectures (continued)

SIMD architecture
o Single instruction/Multiple data
o Multiple processors running in parallel

o All processors execute same operation at one
time

o Each processor operates on its own data

o Suitable for “vector” operations

Invitation to Computer Science, C++ Version, Third Edition 36

Control unit

| | Bus

Replicated
ALU units ALU ALU ALU ALU
Local
memory Memory Memory Memory Memory

Figure 5.21
A SIMD Parallel Processing System

Invitation to Computer Science, C++ Version, Third Edition

37

The Future: Non-Von Neumann
Architectures (continued)

MIMD architecture
o Multiple instruction/Multiple data
o Multiple processors running in parallel

o Each processor performs its own operations on its
own data

o Processors communicate with each other

Invitation to Computer Science, C++ Version, Third Edition 38

‘ Local memory Local memory s Local memory

Processor Processor *'oe Processor

Interconnection network

Figure 5.22
Model of MIMD Parallel Processing

Invitation to Computer Science, C++ Version, Third Edition 39

Summary of Level 2

Focus on how to design and build computer
systems

Chapter 4

o Binary codes
o Transistors
o Gates

o Circuits

Invitation to Computer Science, C++ Version, Third Edition

40

Summary of Level 2 (continued)

Chapter 5
2 Von Neumann architecture

o Shortcomings of the sequential model of
computing

o Parallel computers

Invitation to Computer Science, C++ Version, Third Edition

41

Summary

Computer organization examines different
subsystems of a computer: memory, input/output,
arithmetic/logic unit, and control unit

Machine language gives codes for each
primitive instruction the computer can perform,
and its arguments

Von Neumann machine: sequential execution of
stored program

Parallel computers improve speed by doing
multiple tasks at one time

Invitation to Computer Science, C++ Version, Third Edition 42

