
Chapter 5: Computer Systems

Organization

Invitation to Computer Science,

C++ Version, Third Edition

Invitation to Computer Science, C++ Version, Third Edition 2

Objectives

In this chapter, you will learn about:

 The components of a computer system

 Putting all the pieces together – the Von

Neumann architecture

 The future: non-Von Neumann architectures

Invitation to Computer Science, C++ Version, Third Edition 3

Introduction

 Computer organization examines the computer

as a collection of interacting “functional units”

 Functional units may be built out of the circuits

already studied

 Higher level of abstraction assists in

understanding by reducing complexity

Invitation to Computer Science, C++ Version, Third Edition 4

Figure 5.1

The Concept of Abstraction

Invitation to Computer Science, C++ Version, Third Edition 5

The Components of a Computer

System

 Von Neumann architecture has four functional

units:

 Memory

 Input/Output

 Arithmetic/Logic unit

 Control unit

 Sequential execution of instructions

 Stored program concept

Invitation to Computer Science, C++ Version, Third Edition 6

Figure 5.2

Components of the Von Neumann Architecture

Invitation to Computer Science, C++ Version, Third Edition 7

Memory and Cache

 Information stored and fetched from memory

subsystem

 Random Access Memory maps addresses to

memory locations

 Cache memory keeps values currently in use in

faster memory to speed access times

Invitation to Computer Science, C++ Version, Third Edition 8

Memory and Cache (continued)

 RAM (Random Access Memory)

 Memory made of addressable “cells”

 Current standard cell size is 8 bits

 All memory cells accessed in equal time

 Memory address

 Unsigned binary number N long

 Address space is then 2N cells

Invitation to Computer Science, C++ Version, Third Edition 9

Figure 5.3

Structure of Random Access Memory

Invitation to Computer Science, C++ Version, Third Edition 10

Memory and Cache (continued)

 Parts of the memory subsystem

 Fetch/store controller

 Fetch: retrieve a value from memory

 Store: store a value into memory

 Memory address register (MAR)

 Memory data register (MDR)

 Memory cells, with decoder(s) to select individual

cells

Invitation to Computer Science, C++ Version, Third Edition 11

Memory and Cache (continued)

 Fetch operation

 The address of the desired memory cell is moved

into the MAR

 Fetch/store controller signals a “fetch,” accessing

the memory cell

 The value at the MAR’s location flows into the

MDR

Invitation to Computer Science, C++ Version, Third Edition 12

Memory and Cache (continued)

 Store operation

 The address of the cell where the value should go

is placed in the MAR

 The new value is placed in the MDR

 Fetch/store controller signals a “store,” copying

the MDR’s value into the desired cell

Invitation to Computer Science, C++ Version, Third Edition 13

Memory and Cache (continued)

 Memory register

 Very fast memory location

 Given a name, not an address

 Serves some special purpose

 Modern computers have dozens or hundreds of

registers

Invitation to Computer Science, C++ Version, Third Edition 14

Figure 5.7

Overall RAM Organization

Invitation to Computer Science, C++ Version, Third Edition 15

Cache Memory

 Memory access is much slower than processing

time

 Faster memory is too expensive to use for all

memory cells

 Locality principle

 Once a value is used, it is likely to be used again

 Small size, fast memory just for values currently

in use speeds computing time

Invitation to Computer Science, C++ Version, Third Edition 16

Input/Output and Mass Storage

 Communication with outside world and external

data storage

 Human interfaces: monitor, keyboard, mouse

 Archival storage: not dependent on constant

power

 External devices vary tremendously from each

other

Invitation to Computer Science, C++ Version, Third Edition 17

Input/Output and Mass Storage

(continued)

 Volatile storage

 Information disappears when the power is turned

off

 Example: RAM

 Nonvolatile storage

 Information does not disappear when the power is

turned off

 Example: mass storage devices such as disks

and tapes

Invitation to Computer Science, C++ Version, Third Edition 18

Input/Output and Mass Storage

(continued)

 Mass storage devices

 Direct access storage device

 Hard drive, CD-ROM, DVD, etc.

 Uses its own addressing scheme to access data

 Sequential access storage device

 Tape drive, etc.

 Stores data sequentially

 Used for backup storage these days

Invitation to Computer Science, C++ Version, Third Edition 19

Input/Output and Mass Storage

(continued)

 Direct access storage devices

 Data stored on a spinning disk

 Disk divided into concentric rings (sectors)

 Read/write head moves from one ring to another

while disk spins

 Access time depends on:

 Time to move head to correct sector

 Time for sector to spin to data location

Invitation to Computer Science, C++ Version, Third Edition 20

Figure 5.8

Overall Organization of a Typical Disk

Invitation to Computer Science, C++ Version, Third Edition 21

Input/Output and Mass Storage

(continued)

 I/O controller

 Intermediary between central processor and I/O

devices

 Processor sends request and data, then goes on

with its work

 I/O controller interrupts processor when request is

complete

Invitation to Computer Science, C++ Version, Third Edition 22

Figure 5.9

Organization of an I/O Controller

Invitation to Computer Science, C++ Version, Third Edition 23

The Arithmetic/Logic Unit

 Actual computations are performed

 Primitive operation circuits

 Arithmetic (ADD, etc.)

 Comparison (CE, etc.)

 Logic (AND, etc.)

 Data inputs and results stored in registers

 Multiplexor selects desired output

Invitation to Computer Science, C++ Version, Third Edition 24

The Arithmetic/Logic Unit (continued)

 ALU process

 Values for operations copied into ALU’s input

register locations

 All circuits compute results for those inputs

 Multiplexor selects the one desired result from all

values

 Result value copied to desired result register

Invitation to Computer Science, C++ Version, Third Edition 25

Figure 5.12

Using a Multiplexor Circuit to Select the Proper ALU Result

Invitation to Computer Science, C++ Version, Third Edition 26

The Control Unit

 Manages stored program execution

 Task

 Fetch from memory the next instruction to be

executed

 Decode it: determine what is to be done

 Execute it: issue appropriate command to ALU,

memory, and I/O controllers

Invitation to Computer Science, C++ Version, Third Edition 27

Machine Language Instructions

 Can be decoded and executed by control unit

 Parts of instructions

 Operation code (op code)

 Unique unsigned-integer code assigned to each

machine language operation

 Address field(s)

 Memory addresses of the values on which

operation will work

Invitation to Computer Science, C++ Version, Third Edition 28

Figure 5.14

Typical Machine Language Instruction Format

Invitation to Computer Science, C++ Version, Third Edition 29

Machine Language Instructions

(continued)

 Operations of machine language

 Data transfer

 Move values to and from memory and registers

 Arithmetic/logic

 Perform ALU operations that produce numeric

values

Invitation to Computer Science, C++ Version, Third Edition 30

Machine Language Instructions

(continued)

 Operations of machine language (continued)

 Compares

 Set bits of compare register to hold result

 Branches

 Jump to a new memory address to continue

processing

Invitation to Computer Science, C++ Version, Third Edition 31

Control Unit Registers And Circuits

 Parts of control unit

 Links to other subsystems

 Instruction decoder circuit

 Two special registers:

 Program Counter (PC)

 Stores the memory address of the next instruction to

be executed

 Instruction Register (IR)

 Stores the code for the current instruction

Invitation to Computer Science, C++ Version, Third Edition 32

Figure 5.16

Organization of the Control Unit Registers and Circuits

Invitation to Computer Science, C++ Version, Third Edition 33

Putting All the Pieces Together—the

Von Neumann Architecture

 Subsystems connected by a bus

 Bus: wires that permit data transfer among them

 At this level, ignore the details of circuits that

perform these tasks: Abstraction!

 Computer repeats fetch-decode-execute cycle

indefinitely

Invitation to Computer Science, C++ Version, Third Edition 34

Figure 5.18

The Organization

of a Von Neumann

Computer

Invitation to Computer Science, C++ Version, Third Edition 35

The Future: Non-Von Neumann

Architectures

 Physical limitations on speed of Von Neumann

computers

 Non-Von Neumann architectures explored to

bypass these limitations

 Parallel computing architectures can provide

improvements: multiple operations occur at the

same time

Invitation to Computer Science, C++ Version, Third Edition 36

The Future: Non-Von Neumann

Architectures (continued)

 SIMD architecture

 Single instruction/Multiple data

 Multiple processors running in parallel

 All processors execute same operation at one

time

 Each processor operates on its own data

 Suitable for “vector” operations

Invitation to Computer Science, C++ Version, Third Edition 37

Figure 5.21

A SIMD Parallel Processing System

Invitation to Computer Science, C++ Version, Third Edition 38

 MIMD architecture

 Multiple instruction/Multiple data

 Multiple processors running in parallel

 Each processor performs its own operations on its

own data

 Processors communicate with each other

The Future: Non-Von Neumann

Architectures (continued)

Invitation to Computer Science, C++ Version, Third Edition 39

Figure 5.22

Model of MIMD Parallel Processing

Invitation to Computer Science, C++ Version, Third Edition 40

Summary of Level 2

 Focus on how to design and build computer

systems

 Chapter 4

 Binary codes

 Transistors

 Gates

 Circuits

Invitation to Computer Science, C++ Version, Third Edition 41

Summary of Level 2 (continued)

 Chapter 5

 Von Neumann architecture

 Shortcomings of the sequential model of

computing

 Parallel computers

Invitation to Computer Science, C++ Version, Third Edition 42

Summary

 Computer organization examines different

subsystems of a computer: memory, input/output,

arithmetic/logic unit, and control unit

 Machine language gives codes for each

primitive instruction the computer can perform,

and its arguments

 Von Neumann machine: sequential execution of

stored program

 Parallel computers improve speed by doing

multiple tasks at one time

