
DBMS-Data Base Management System

• It is a software that helps us to store,
manipulate and retrieve data from a database

• DBMS contains information about a
particular enterprise

• DBMS provides an environment that it both
convenient and efficient to use

Purpose of DBMS

• Data redundancy and inconsistency- data is repeated in different
files and Can even be different in different files.

• Difficulty in accessing data- It is not easy to retrieve information
using a conventional file processing system. Convenient and
efficient information retrieval is almost impossible using
conventional file processing system.

• Integrity problems- The data values may need to satisfy some
integrity constraints. For example the salary field value must be
grater than 5000. We have to handle this through program code in
file processing systems. But in database we can declare the integrity
constraints along with definition itself.

Purpose of DBMS Systems

• Data isolation – Data are scattered in various files, and the files may
be in different format, writing new application program to retrieve
data is difficult.

Concurrent access by multiple users- If multiple users are updating
the same data simultaneously it will result in inconsistent data
state. In file processing system it is very difficult to handle this using
program code. This results in concurrent access anomalies.

Security problems-Enforcing Security Constraints in file processing
system is very difficult.

Relational Database Management System
(RDBMS)

 A DBMS that is based on relational model is called as RDBMS. Relation model is

most successful mode of all three models. Designed by E.F. Codd, relational model

is based on the theory of sets and relations of mathematics.

 Relational model represents data in the form a table. A table is a two dimensional
array containing rows and columns. Each row contains data related to an entity
such as a student. Each column contains the data related to a single attribute of
the entity such as student name.

 One of the reasons behind the success of relational model is its simplicity. It is easy

to understand the data and easy to manipulate.

DBMS vs. RDBMS

• • Relationship among tables is maintained in a RDBMS whereas this
not the case of DBMS.

• • DBMS is used for simpler business applications whereas RDBMS is
used for more complex applications.

• • Although the foreign key concept is supported by both DBMS and
RDBMS but its only RDBMS that enforces the rules.

• • RDBMS solution is required by large sets of data whereas small
sets of data can be managed by DBMS.

JDBC
Java Database Connectivity in short called as JDBC is a

java API (Java Programming interface) which enables the java
programs to execute SQL statements. (The Java API is the set of
classes included with the Java Development Environment. These
classes are written using the Java language and run on the JVM. The
Java API includes everything from collection classes to GUI classes)

It is an application programming interface that defines
how a java programmer can access the database in tabular format
from Java code using a set of standard interfaces and classes
written in the Java programming language. JDBC provides methods
for querying and updating the data in Relational Database
Management system such as SQL, Oracle etc.

.

JDBC
The Java application programming interface provides a

mechanism for dynamically loading the correct Java packages and
drivers and registering them with the JDBC Driver Manager that is
used as a connection factory for creating JDBC connections which
supports creating and executing statements such as SQL INSERT,
UPDATE and DELETE. Driver Manager is the backbone of the jdbc
architecture

In short JDBC helps the programmers to write java applications that
manage these three programming activities:

1. It helps us to connect to a data source, like a database.
2. It helps us in sending queries and updating statements to the

database and
3. Retrieving and processing the results received from the database in

terms of answering to your query.

JDBC provides Java applications with access to most database systems via

SQL

The architecture and API closely resemble Microsoft's ODBC

JDBC 1.0 was originally introduced into Java 1.1

JDBC 2.0 was added to Java 1.2

JDBC is based on SQL-92

JDBC classes are contained within the java.sql package

There are few classes

There are several interfaces

What is JDBC?

JDBC Architecture:

JDBC Architecture
The JDBC Architecture consists of two layers:

1.The JDBC API, which provides the application-to-JDBC Manager connection.

2. The JDBC Driver API, which supports the JDBC Manager-to-Driver Connection.

The JDBC API uses a driver manager and database-specific drivers to provide
transparent connectivity to heterogeneous databases. The JDBC driver manager
ensures that the correct driver is used to access each data source. The driver
manager is the backbone of the JDBC architecture. The driver manager is capable
of supporting multiple concurrent drivers connected to multiple heterogeneous
databases.

Common JDBC Components:

The JDBC API provides the following interfaces and classes:
• DriverManager: This interface manages a list of database drivers.

Matches connection requests from the java application with the
proper database driver using communication subprotocol. The first
driver that recognizes a certain subprotocol under JDBC will be used
to establish a database Connection.

• Driver: This interface handles the communications with the
database server. You will interact directly with Driver objects very
rarely. Instead, you use DriverManager objects, which manages
objects of this type. It also abstracts the details associated with
working with Driver objects

• Connection : Interface with all methods for contacting a database.
The connection object represents communication context, i.e., all
communication with database is through connection object only.

.

Common JDBC Components:

• Statement : Statement acts like a vehicle through which SQL
commands can be sent. Through the connection object we create
statement kind of objects.
Statement stmt = conn.createStatement();

This method returns object which implements statement interface
• ResultSet: These objects hold data retrieved from a database after

you execute an SQL query using Statement objects. It acts as an
iterator to allow you to move through its data.

• SQLException: This class handles any errors that occur in a
database application.

How the JDBC application works?
.A JDBC application can be logically divided into two layers:
1. Driver layer
2. Application layer
Driver layer consists of DriverManager class and the available JDBC drivers.
The application begins with requesting the DriverManager for the connection.
An appropriate driver is choosen and is used for establishing the connection. This
connection is given to the application which falls under the application layer.
The application uses this connection to create Statement kind of objects, through which
SQL commands are sent to backend and obtain the results.

JDBC Models
The JDBC API supports both two-tier and three-tier processing models for database access.

Figure 1: Two-tier Architecture for Data Access.

In the two-tier model, a Java application talks directly to the data source. This requires
a JDBC driver that can communicate with the particular data source being accessed. A
user's commands are delivered to the database or other data source, and the results of
those statements are sent back to the user. The data source may be located on another
machine to which the user is connected via a network. This is referred to as a
client/server configuration, with the user's machine as the client, and the machine
housing the data source as the server. The network can be an intranet, which, for
example, connects employees within a corporation, or it can be the Internet.

Three-tier model
• In the three-tier model, commands are sent to a "middle tier" of services, which

then sends the commands to the data source. The data source processes the
commands and sends the results back to the middle tier, which then sends them to
the user. MIS directors find the three-tier model very attractive because the middle
tier makes it possible to maintain control over access and the kinds of updates that
can be made to corporate data. Another advantage is that it simplifies the
deployment of applications. Finally, in many cases, the three-tier architecture can
provide performance advantages.

Figure 2: Three-tier Architecture for Data Access.

