Classes and Objects
IN C++

#include <iostream:>
using namespace std;

class Box {

public: A public member can be

double length; /f Length of a box :
Conile brecith: 17 Broceh of 3 box accessed from outside the class

double height; // Height of a box Ony\/\/here within the SCope of
s the class object. You can also
int main() { specify the members of a class
Box Box1; // Declare Boxl of type Box . -
Box Box2; // Declare Box2 of type Box as p".vqi.e = prOteCied WhICh
double wolume = 8.8; ff store the volume of a box here we W|” d|SCUSS.

// box 1 specification
Box1l.height = 5.8;
Box1l.length = 6.8;
Boxl.breadth = 7.9;

!/ box 2 specification
Box2.height = 18.8;
Box2.length = 12.@;
Box2.breadth = 13.8;

FFovolume of box 1
volume = Boxl.height * Boxl.length * Boxl.breadth;
cout << "Volume of Boxl : " << wvolume <<endl;

/f wvolume of box 2

volume = Box2.height * Box2.length * Box2.breadth;
cout << "Volume of Box2 : " << volume <<endl;
return o;

When the above code is compiled and executed, it produces the following
result —

Volume of Boxl : 214
Volume of Box2 : 1568

Class Member Functions

A member function of a class is a function that has its definition or
its prototype within the class definition like any other variable.

Class Access Modifiers &

A class member can be defined as public, private or protected. By
default members would be assumed as private.

Constructor & Destructor 7

A class constructor is a special function in a class that is called when

a new object of the class is created. A destructor is also a special
function which is called when created object is deleted.

Copy Constructor
The copy constructor is a constructor which creates an object by

initializing it with an object of the same class, which has been
created previously.

Friend Functions &

A friend function is permitted full access to private and protected
members of a class.

Inline Functions &

With an inline function, the compiler tries to expand the code in the
body of the function in place of a call to the function.

this Pointer &

Every object has a special pointer this which points to the object
itself.

Default Constructor

#include <iostream:
using namespace std;

class Line {
public:
void setlength{ double len }; - . . .
» When the above code is compiled and executed, it produces the following
double getlength{ weoid);
Line(); // This is the constructor result —
private:

double length; Object is being created

ks Length of line : &
ff Member functions definitions including constructor
Line::Line(wvoid) {
cout << "Dbject is being created"” << endl;
¥
void Line::setLength{ double len) {
length = len;

¥
double Line::getlength({ veoid) {

return length;

¥

£ Main function for the program
int main() {
Line line;

ff set line length
line.setLength{&.@);
cout << "Length of line : " << line.getlength() <<endl;

return 8;

;
\\

Parameterized Constructor

#tinclude <iostream:

using namespace std;

Heblic | » A default constructor does not
void setlength({ double len }; c
e e e have any parameter, but if you
Line{double len); // Thiz iz the constructor rweaeacj, a (ZC)F\STFLJ(ZTC)F can f\(]\/EB
private: parameters. This helps you to
ouble length; . o eyge .
1 ; assign inifial value to an object
ff Member functions definitions including constructor C]T TfWEB Tirr1€3 ()f iTS C:FEB(]11()F1
Line::Line({ double len) {
cout << "Object is being created, length = " << len << endl;

length = len;

¥

void Line::setLength{ double len) {
length = len;

¥

double Line::getlLength(wvoid) {
return length;

} When the above code is compiled and executed, it produces the following

f/f Main function for the program result —
int main() |

tine line(10.2); Object is being created, length = 18
/i get initially set length. Length of line : 18

cout << "Length of line : ™ << line.getlength() <<endl; Length of line : 6

/{ set line length again
line.setlength{&.2);
cout << "Length of line : " << line.getlength() <<endl;

return @;

\

Copy Constructor

#include<iostream>

using namespace std;
class Samplecopyconstructor
: =» The copy .
private: constructor is @
int x, y; .
constructor which
public: c
Samplecopyconstructor(int x1, int y1) Cl’eCITeS Oﬂ ObJeCT by
£ initializing it with an
e object of the same
class, which has been
samplecopyconstructor (const Samplecopyconstructor &sam) CreOTed preV|OUS|y
{
y z sam:y;
}

void display()
{

coutcex<<” "<<y<<endl;

3

Copy constructor : 18 15

main()

Samplecopyconstructor obji(1e, 15);
Samplecopyconstructor obj2 = objl;
cout<<™Normal constructor : ";
obji.display();

cout<<"Copy constructor : ";
obj2.display();

return e;

Destructor

#include <iostream>

using namespace std;
class Line {

public: .
void setlength{ double len }; — A deStrUCior IS A
double getlength{ woid); 8
Line(); /f This is the constructor declaration SF)EB(:chl rY}EBrTWk)EBr
~Line(); // This is the destructor: declaration fLerc:Tic)rw C)f a

private: class that is
double length;

b5 executed
f// Member functions definitions including constructer \A/r]ear]ea\/ear an
Line::Line{wvoid]) { 8 A
cout << "Object is being created™ << endl; C)k)JEBC:T ()f IT S
I o class goes out
Line::~Line{woid) {
cout << "Object is being deleted™ << endl; ()f S(:()F)E}
¥
void Line::setlength{ double len) {
length = len;
¥
double Line::getlength({ woid) {
return length; When the above code is compiled and executed, it produces the following
I result —
f/ Main function for the program
int main() { Object is being created
Line line; Length of line : &
// set line length Object is being deleted

line.setlength(&.8);
cout << "Length of line :

<< line.getlength() <<endl;

return 8;

}
Y\ \

Mutators and Accessors

» A mutator is a function that can change the state of a host object, that is
of the object that invokes it.

» A Accessor is a function that cannot change the state of it's invoking
object.

Inline function

» |f a functionisinline, the compiler places a copy of the code of that
function at each point where the function is called at compile time.

» To inline a function, place the keyword inline before the function name
and define the function before any calls are made to the function. The
compiler can ignore the inline qualifier in case defined function is more

than a line.

» A function definition in a class definition is an inline function definition, even
without the use of the inline specifier.

Following is an example, which makes use of inline function to return max of
two numbers —

. i &' Live Demo
#include <iostream>

using namespace std;

inline int Max(int x, int y) {
return (x > y)? x @ y;

h

// Main function for the program
int main() {
cout << "Max (28,18): " << Max(28,10) << endl;
cout << "Max (@,2008): " << Max(@,200) << endl;
cout << "Max (188,1818): " << Max(188,1818) << endl;

return 8;

When the above code is compiled and executed, it produces the following
result —

Max (208,18): 28
Max (@,200): 200
Max (109,1918): 1818

Polymorphism

» Compile time
s Operator Overloading
“*Function Overloading
» Run Time

“*Using Virtual Functions
“*Inheritance

Function Overloading

= You can have multiple definitions for the same function name in the same
scope.

» The definition of the function must differ from each other by the (signature)
types and/or the number of arguments in the argument list. You cannot
overload function declarations that differ only by return type.

» void area(int a);
» void ared(int g, int b);

Function Overloading (achieved at compile time)

t provides multiple definitions of the function by changing signature 1.e changing number of

parameters, change datatype of parameters, return type doesn't play anyrole.

\\

#include <iostream:>
using namespace std;

class printData {
public:
vold print(int 1) {
cout << "Printing int:

<¢{ 1 << endl;

¥

void print(double f) {
cout << "Printing float:

¢ T << endl;
¥
void print(char*® c) {

cout << "Printing character:

<< € << endl;

H
s

int main{veoid) {
printData pd;

/{ Call print to print integer
pd.print(5);

/{ Call print to print float
pd.print(580.263);

/f Call print to print character
pd.print{"Hello C++");

return o;

Printing int: 5
Printing float: 588.263

Printing character: Hello C++

Operator Overloading

» C++ allows you to specify more than one definition for an operator in the
same scope, which is called operator overloading .

» QOverloaded operators are functions with special names: the keyword
"operator’ followed by the symbol for the operator being defined. Like any
other function, an overloaded operator has a return type and a parameter
list.

» Box operator+(const Box&);

Following is the list of operators which can be overloaded —

+ - ® / % o
& ~ ! ; —
< > <= = ++ _
<< > == I= && |l
+= = /= o= . &=
|= * co= »>=] ()
- - F new new [] delete delete []

Following is the list of operators, which can not be overloaded —

K . 7

Static Data Members

» We can define class members static using static keyword. When we
declare a member of a class as static it means no matter how many
objects of the class are created, there is only one copy of the static
member.

» A static member is shared by all objects of the class. All static data is
inifialized to zero when the first object is created, if no other initialization is
present.

Static Function Members

» By declaring a function member as static, you make it independent of any
particular object of the class.

» A static member function can be called even if no objects of the class
exist and the static functions are accessed using only the class name and
the scope resolution

» A static member function can only access static data member, other static
member functions and any other functions from outside the class.
operator ::

class Box

{
public:
static int objectCount;

static int getCount()
{

return objectCount;

// Initialize static member of class Box
int Box::objectCount =0;
Int main()

{

cout << "Final Stage Count: " << Box::getCount() << endl;

}

Friend Function

» A friend function of a class is defined outside that class' scope but it has the
right to access all private and protected members of the class.

To declare a function as a friend of a class, precede the function prototype in
the class definition with keyword friend as follows —

class Box {

double width;

public:
double length;
friend void printWidth{ Box box };
vold setWidth({ double wid)}:
T

Friend Class

» A friend class can access private and protected members of other class in which it is
declared as friend. It is sometimes useful to allow a particular class to access private
members of other class.

class Node

rivate:

int key;

friend class LinkedList; // Now class LinkedList can access private members of node

|

Inheritance

» When creating a class, instead of writing completely new data members
and member functions, the programmer can designate that the new class
should inherit the members of an existing class.

» This existing class is called the base class, and the new class is referred to as
the derived class.

Private, Protected and Public

Inheritance Type Base Access Type Derived Access Type

Private Private Inherited but inaccessible
Protected Private
Public Private

Protected Private Inherited but inaccessible
Protected Protected
Public Protected

Public Private Inherited but inaccessible
Protected Protected

Public Public

Overriding Member Functions

Function Overriding (achieved at run time)

It is the redefinition of base class function in its derived class with same signature i.e return type and

parameters.

= |t can only be done in derived class.

= Example:

Cle=s &

{
public:
virtual void display(){ cout << "hello"; }

Class b:public a

{
public:
vold display()}{ cout << "bye";}:

Static Binding/ Early Binding

Refer to events that occurs at compile time.

For example : Normal function calls, Overloaded function calls
Advantages

Efficiency

It is fast because all the information necessary to call a function is
determined at compile time.

Dynamic Binding

» Refers fo those function calls that are not resolved until run time.
» Virtual functions are used to achieve late binding.

» Advantage : Flexibility

Virtual Functions

®»|t s a member function that is declaread
within base class and redefined by
derived class.

® |t s One Interface, Multiple Method
philosophy

Pure Virtual Functions : Abstract Classes

®» A virfual function without any definition in bbase
class Is tfermed as pure virfual function

» For example: virtual type func_name()=0;

Abstract Classes

» A class with one afleast pure virtual function is
an Abstract Class

Objects can't be created tor Abstract Class.

Concrete Classes

The classes whose objects can be
reated

