
Classes and Objects

in C++

A public member can be

accessed from outside the class

anywhere within the scope of

the class object. You can also

specify the members of a class

as private or protected which

we will discuss.

Default Constructor

Parameterized Constructor

 A default constructor does not

have any parameter, but if you

need, a constructor can have

parameters. This helps you to

assign initial value to an object

at the time of its creation

Copy Constructor

 The copy

constructor is a

constructor which

creates an object by

initializing it with an

object of the same

class, which has been

created previously.

Destructor

 A destructor is a

special member

function of a

class that is

executed

whenever an

object of it's

class goes out

of scope

Mutators and Accessors

 A mutator is a function that can change the state of a host object, that is

of the object that invokes it.

 A Accessor is a function that cannot change the state of it’s invoking

object.

Inline function

 If a function is inline, the compiler places a copy of the code of that

function at each point where the function is called at compile time.

 To inline a function, place the keyword inline before the function name

and define the function before any calls are made to the function. The

compiler can ignore the inline qualifier in case defined function is more

than a line.

 A function definition in a class definition is an inline function definition, even

without the use of the inline specifier.

Polymorphism

Compile time

Operator Overloading

Function Overloading

 Run Time

Using Virtual Functions

Inheritance

 You can have multiple definitions for the same function name in the same

scope.

 The definition of the function must differ from each other by the (signature)

types and/or the number of arguments in the argument list. You cannot

overload function declarations that differ only by return type.

 void area(int a);

 void area(int a, int b);

Function Overloading

Operator Overloading

 C++ allows you to specify more than one definition for an operator in the

same scope, which is called operator overloading .

 Overloaded operators are functions with special names: the keyword

"operator" followed by the symbol for the operator being defined. Like any

other function, an overloaded operator has a return type and a parameter

list.

 Box operator+(const Box&);

Static Data Members

 We can define class members static using static keyword. When we

declare a member of a class as static it means no matter how many

objects of the class are created, there is only one copy of the static

member.

 A static member is shared by all objects of the class. All static data is

initialized to zero when the first object is created, if no other initialization is

present.

Static Function Members

 By declaring a function member as static, you make it independent of any

particular object of the class.

 A static member function can be called even if no objects of the class

exist and the static functions are accessed using only the class name and

the scope resolution

 A static member function can only access static data member, other static

member functions and any other functions from outside the class.

operator ::

class Box

{

public:

static int objectCount;

static int getCount()

{

return objectCount;

}

};

// Initialize static member of class Box

int Box::objectCount = 0;

Int main()

{

cout << "Final Stage Count: " << Box::getCount() << endl;

}

Friend Function

 A friend function of a class is defined outside that class' scope but it has the

right to access all private and protected members of the class.

Friend Class

 A friend class can access private and protected members of other class in which it is

declared as friend. It is sometimes useful to allow a particular class to access private

members of other class.

class Node

{

private:

int key;

friend class LinkedList; // Now class LinkedList can access private members of node

};

Inheritance

 When creating a class, instead of writing completely new data members

and member functions, the programmer can designate that the new class

should inherit the members of an existing class.

 This existing class is called the base class, and the new class is referred to as

the derived class.

Private, Protected and Public

Inheritance Type Base Access Type Derived Access Type

Private Private

Protected

Public

Inherited but inaccessible

Private

Private

Protected Private

Protected

Public

Inherited but inaccessible

Protected

Protected

Public Private

Protected

Public

Inherited but inaccessible

Protected

Public

Overriding Member Functions

Static Binding/ Early Binding

 Refer to events that occurs at compile time.

 For example : Normal function calls, Overloaded function calls

Advantages

 Efficiency

 It is fast because all the information necessary to call a function is

determined at compile time.

Dynamic Binding

 Refers to those function calls that are not resolved until run time.

 Virtual functions are used to achieve late binding.

 Advantage : Flexibility

Virtual Functions

It is a member function that is declared

within base class and redefined by

derived class.

It is One Interface, Multiple Method

philosophy

Pure Virtual Functions : Abstract Classes

A virtual function without any definition in base
class is termed as pure virtual function

For example: virtual type func_name()=0;

Abstract Classes

A class with one atleast pure virtual function is
an Abstract Class

Objects can’t be created for Abstract Class.

Concrete Classes

The classes whose objects can be

created

