
FUNCTIONS 
IN

C++



INTRODUCTION TO FUNCTIONS

 A function groups a number of program 

statements into a unit and gives it a name. 

 This unit can then be invoked from other parts of 

the

 Another reason to use functions is to reduce 

program size.

 Any sequence of instructions that appears in a 

program more than once is a candidate for being 

made into a function. program.



FLOW OF CONTROL TO A FUNCTION



#include <iostream>

void starline(); //function declaration/ (prototype)

int main()

{

starline(); //call to function

cout << “Data type Range” << endl;

starline(); //call to function

cout << “char -128 to 127” << endl

starline(); //call to function

return 0;

}

// function definition

void starline() //function declarator/definition

{

for(int j=0; j<45; j++) //function body

cout << ‘*’;

}



THE FUNCTION DECLARATION

 The declaration tells the compiler that at some 

later point we plan to present a function called 

starline.

 The keyword void specifies that the function has 

no return value, and the empty parentheses 

indicate that it takes no arguments.

 Function declarations are also called prototypes



CALLING THE FUNCTION

 The function is called (or invoked, or executed) 

three times from main(). 

 Each of the three calls looks like this:

starline();

 This is all we need to call the function: 

1) the function name

2) followed by parentheses.

The syntax of the call is very similar to that of the 

declaration, except that the return type is 

not used.

3)The call is terminated by a semicolon.



THE FUNCTION DEFINITION

void starline() //declarator

{

for(int j=0; j<45; j++) //function body

cout << ‘*’;

cout << endl;

}

The definition consists of a line called the 

declarator, followed by the function body. The 

function body is composed of the statements that 

make up the function, delimited by braces.



FUNCTION

SYNTAX



FUNCTION COMPONENTS



ELIMINATING THE DECLARATION

#include <iostream>

// starline() //function definition

void starline()

{

for(int j=0; j<45; j++)

cout << ‘*’;

cout << endl;

}

int main() 

{

starline(); //call to function

cout << “Data type Range” << endl;

starline(); //call to function

cout << “char -128 to 127” 

starline();

}



PASSING ARGUMENTS TO FUNCTIONS

 An argument is a piece of data (an int value, for 

example) passed from a program to the function.

 Arguments allow a function to operate with 

different values, or even to do different

 things, depending on the requirements of the 

program calling it.



PASSING VARIABLES

#include <iostream>

void repchar(char, int); //function 

declaration

int main()

{

char chin;

int nin;

cout << “Enter a character: “;

cin >> chin;

cout << “Enter number of times 

to repeat it: “;

cin >> nin;

repchar(chin, nin);

return 0;

}

// function definition

void repchar(char ch, int

n) //function declarator

{

for(int j=0; j<n; j++) 

//function body

cout << ch;

cout << endl;

}



Passing 

by value.



RETURNING VALUES FROM FUNCTIONS

 When a function completes its execution, it can 

return a single value to the calling program.



RETURNING VALUES FROM FUNCTIONS

#include <iostream>

float lbstokg(float); 

//declaration

int main()

{

float lbs, kgs;

cout << “\nEnter your 

weight in pounds: “;

cin >> lbs;

kgs = lbstokg(lbs);

cout << “Your weight in 

kilograms is “ << kgs << 

endl;

return 0;

float lbstokg(float pounds)

{

float kilograms = 0.453592 

* pounds;

return kilograms;

}



INLINE FUNCTIONS

To save execution time in short functions, you 

may elect to put the code in the function body 

directly inline with the code in the calling 

program. That is, each time there’s a function 

call in the source file, the actual code from the 

function is inserted, instead of a jump to 

the function



Functions 

versus 

inline 

code



INLINE FUNCTION

This kind of function is written like a normal 

function in the source file but compiles into 

inline code instead of into a function. 

The source file remains well organized and easy 

to read, since the function is shown as a separate 

entity.

However, when the program is compiled, the 

function body is actually inserted into the 

program wherever a function call occurs.



#include <iostream>

inline float lbstokg(float pounds)

{

return 0.453592 * pounds;

}

int main()

{

float lbs;

cout << “\nEnter your weight in pounds: “;

cin >> lbs;

cout << “Your weight in kilograms is “ << lbstokg(lbs)

return 0;

}




