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How does one go about finding the 
“correct” model?

1. what are the criteria in choosing a model for empirical 
analysis?

2. What types of model specification errors is one likely 
to encounter in practice?

3. What are the consequences of specification errors?
4. How does one detect specification errors? In other 

words, what are some of the diagnostic tools that one 
can use?

5. Having detected specification errors, what remedies 
can one adopt and with what benefits?

6. How does one evaluate the performance of 
competing models?



Model chosen for empirical analysis
should satisfy the following criteria:

• Be data admissible- that is, predictions made from the model

must be logically possible.

• Be consistent with theory- that is, it must make good economic

sense. For example,

• Have weakly exogenous regressors- that is, the explanatory

variables, or regressors, must be uncorrelated with the error term.

• Exhibit parameter constancy- the values of the parameters should

be stable. Otherwise, forecasting will be difficulty.

• Exhibit data coherency- the residuals estimated from themodel

must be purely random.

• Be encompassing - the model should include all the rival models 

in the sense that it is capable of explaining their results. In short, 

other models cannot be an improvement over the chosen model.



TYPES OF SPECIFICATION ERRORS
• let this model be

𝑌𝑖 = 𝛽1 + 𝛽2𝑋𝑖 + 𝛽3𝑋𝑖
2 + 𝛽4𝑋𝑖

3 + 𝑢1𝑖 (1)

where Y = total cost of production and X = output.

• But suppose for some reason a researcher decides 
to use the following model

• 𝑌𝑖 = 𝛼1 + 𝛼2𝑋𝑖 + 𝛼3𝑋𝑖
2 + 𝑢2𝑖 (2)

• This would constitute a specificationerror, the 
error consisting in omitting a relevant variable 

(𝑋𝑖
3). Therefore, the error term 𝑢2𝑖 is infact

𝑢2𝑖= 𝛽4𝑋𝑖
3 + 𝑢1𝑖 (3)



• Now suppose that another researcher uses 
the following model

𝑌𝑖 = 𝛾1 + 𝛾2𝑋𝑖 + 𝛾3𝑋𝑖
2 + 𝛾4𝑋𝑖

3 + 𝛾5𝑋𝑖
4 +𝑢3𝑖 (4)

• If (1) is Correct (4) also constitutes a 
specification error, the error here consisting in 
including an unnecessary or irrelevant 
variable. The new error term is in fact

𝑢3𝑖= 𝑢1𝑖 − 𝛾5𝑋𝑖
4 (5) 

= 𝑢1𝑖 since 𝛾5= 0



• Now assume that yet another researcher 
postulates the following model

• 𝑙𝑛𝑌𝑖 = 𝜏1 + 𝜏2𝑋𝑖 + 𝜏3𝑋𝑖
2 + 𝜏4𝑋𝑖

3 + 𝑢4𝑖 (6)

• In relation to the true model would also 
constitute a specification bias, the bias here being 
the use of the wrong functional form. In (1) Y 
appears linearly, whereas in (6) it appears log-
linearly.

• Finally, consider the researcher who uses the 
following model:

𝑌𝑖
∗ = 𝛽1

∗ + 𝛽2
∗𝑋𝑖

∗ + 𝛽3
∗𝑋𝑖

∗2 + 𝛽4
∗𝑋𝑖

∗3 + 𝑢𝑖
∗ (7)



• where 𝑌𝑖
∗= 𝑌𝑖+ 𝜀𝑖and 𝑋𝑖

∗ = 𝑋𝑖+ 𝜔𝑖, 𝜀𝑖and 𝜔𝑖being 
the errors of measurement.

• What (7) states is that instead of using the true 
𝑌𝑖 and 𝑋𝑖we use their proxies, 𝑌𝑖

∗and 𝑋𝑖
∗, which 

may contain errors of measurement. Therefore, 
in (7) we commit the errors of measurement 
bias.

• Another type of specification error relates to the 
way the stochastic error

• 𝑢𝑖(or 𝑢𝑡) enters the regression model. Consider 
for instance, the following bivariate regression 
model without the intercept term

• 𝑌𝑖= 𝛽𝑋𝑖𝑢𝑖 (8)



• where the stochastic error term enters 
multiplicatively with the property that ln𝑢𝑖
satisfies the assumptions of the CLRM, against 
the following model 𝑌𝑖= 𝛼𝑋𝑖 + 𝑢𝑖 (9)

• where the error term enters additively. 
Although the variables are the same in the 
two models, we have denoted the slope 
coefficient in (8) by 𝛽and the slope coefficient 
in (9) by α. Now if (8) is the “correct” or “true” 
model, would the estimated α provide an 
unbiased estimate of the true 𝛽?



In developing an empirical model, one is likely to commit 
one or more of the following specification errors:

• 1. Omission of a relevant variable(s)

• 2. Inclusion of an unnecessary variable(s)

• 3. Adopting the wrong functional form

• 4. Errors of measurement

• 5. Incorrect specification of the stochastic error term

1-4 are essentially in the nature of model specification
errors in that we have in mind a “true” model but
somehow we do not estimate the correct model. In
model mis-specification errors, we do not know what the
true model is to begin with.



CONSEQUENCES OF MODEL 
SPECIFICATION ERRORS



Underfitting a Model (Omitting a 
Relevant Variable)

• Suppose the true model is:
𝑌𝑖 = 𝛽1 + 𝛽2𝑋2𝑖+ 𝛽3𝑋3𝑖+ 𝑢𝑖 (10)
• but for some reason we fit the following model:
𝑌𝑖= 𝛼1 + 𝛼2𝑋2𝑖+ 𝑣𝑖 (11)
• The consequences of omitting variable 𝑋3 are as 

follows
• If the left-out, or omitted, variable 𝑋3is correlated with 

the included variable 𝑋2, that is, 𝑟23, the correlation 
coefficient between the two variables, is nonzero, ෞ𝛼1
and ෞ𝛼2are biased as well as inconsistent. That is, E(ෞ𝛼1) 
= 𝛽1 and E(ෞ𝛼2) = 𝛽2, and the bias does not disappear as 
the sample size gets larger.



• Even if 𝑋2 and 𝑋3 are not correlated, ෞ𝛼1 is biased, 
althoughෞ𝛼2 is now unbiased.

• The disturbance variance σ2 is incorrectly estimated.

• The conventionally measured variance of ෞ𝛼2 (=
𝜎2/σ𝑥2𝑖

2 ) is a biased estimator of the variance of the 
true estimator ෢𝛽2.

• In consequence, the usual confidence interval and 
hypothesis-testing procedures are likely to give 
misleading conclusions about the statistical significance 
of the estimated parameters.

• The forecasts based on the incorrect model and the 
forecast (confidence) intervals will be unreliable.



𝐸 ෞ𝛼2 = 𝛽2 + 𝛽3𝑏23
where b32 is the slope in the regression of the 
excluded variable X3 on the included variable X2

𝑏23 = 𝛴𝑥3𝑖𝑥2𝑖/𝛴𝑥2𝑖
2

• We can see that ෞ𝛼2 is biased unless 𝛽3or b32 or 
both are zero. 𝛽3 can not be zero otherwise 
there will be no specification error to begin 
with. B32 will be zero when X2 and X3 are 
uncorrelated which is unlikely.



• Generally, however, the extent of the bias will 
depend on the bias term 𝛽3b32. If, for instance, 
𝛽3 is positive (i.e., X3 has a positive effect on Y) 
and b32is positive (i.e., X2 and X3 are positively 
correlated),ෞ𝛼2, on average, will overestimate 
the true 𝛽2. But this result should not be 
surprising, for X2 represents not only its direct 
effect on Y but also its indirect effect (via X3) 
on Y. In short, X2 gets credit for the influence 
that is rightly attributable to X3.X3is prevented 
from showing its effect explicitly because it is 
not “allowed” to enter the model.



Variances of ෞ𝛼2 and ෢𝛽2 are

• 𝑣𝑎𝑟 ෞ𝛼2 =
𝜎2

𝛴𝑥2𝑖
2

• 𝑣𝑎𝑟 ෢𝛽2 =
𝜎2

𝛴𝑥2𝑖
2 (1−𝑟23

2 )
=

𝜎2

𝛴𝑥2𝑖
2 𝑉𝐼𝐹

• In general the two variance will be different.

• Since 0 <𝑟23
2 <1, therefore𝑣𝑎𝑟 ෞ𝛼2 <𝑣𝑎𝑟 ෢𝛽2

• Although ෞ𝛼2 is biased, its variance is smaller than 
the variance of the unbiased estimator ෢𝛽2(we 
rule out the case where r23 = 0, since in practice 
there is some correlation between 
regressors).Therefore a dilemma.



• 𝜎2estimated from model (11) and that estimated from the true 
model (10) are not the same because the RSS of the two models 
as well as their degrees of freedom (df) are different. You may 

recall that we obtain an estimate of 𝜎2 as ෢𝜎2= RSS/df, which 
depends on the number of regressors included in the model as 
well as the df . Now if we add variables to the model, the RSS 
generally decreases (as more variables are added to the model, 
the R2 increases), but the degrees of freedom also decrease 
because more parameters are estimated. The net outcome 
depends on whether the RSS decreases sufficiently to offset the 
loss of degrees of freedom due to the addition of regressors. It is 
quite possible that if a regressorhas a strong impact on the 
regressand—for example, it may reduce RSS more than the loss 
in degrees of freedom as a result of its addition to the model—
inclusion of such variables will not only reduce the bias but will 
also increase precision (i.e., reduce standard errors) of the 
estimators. 



• On the other hand, if the relevant variables have 
only a marginal impact on the regressand, and if 
they are highly correlated (i.e., VIF is larger), we 
may reduce the bias in the coefficients of the 
variables already included in the model, but 
increase their standard errors (i.e., make them 
less efficient).

• The tradeoff in this situation between bias and 
precision can be substantial and  will depend on 
the relative importance of the various regressors.



• When X2 and X3 are uncorrelated 
𝑣𝑎𝑟 ෞ𝛼2 𝑎𝑛𝑑 𝑣𝑎𝑟 ෢𝛽2

• are same then there is no harm in dropping X3.

• The point is clear: Once a model is formulated on the basis 
of the relevant theory, one is illadvisedto drop a variable 
from such a model.



Inclusion of an Irrelevant Variable 
(Overfitting a Model)

• let us assume that  𝑌𝑖 = 𝛽1 + 𝛽2𝑋2𝑖+ 𝑢𝑖 (12)

is the true model but we fit the model 

𝑌𝑖= 𝛼1 + 𝛼2𝑋2𝑖+ 𝛼3𝑋3𝑖+ 𝑣𝑖 (13)

We commit a specification bias of including an un-necessary variable. 
Consequences

• The OLS estimators of the parameters of the “incorrect” model are all 
unbiased and consistent, that is, 𝐸 ෞ𝛼1 = 𝛽1, 𝐸 ෞ𝛼2 = 𝛽2, 𝐸 ෞ𝛼3 =
𝛽3 = 0.

• The error variance 𝜎2 is correctly estimated.

• The usual confidence interval and hypothesis-testing procedures 
remain valid.

• However, the estimated α’s will be generally inefficient, that is, their 

variances will be generally larger than those of the መ𝛽 of the true 
model.



• 𝑣𝑎𝑟 ෢𝛽2 =
𝜎2

𝛴𝑥2𝑖
2

• 𝑣𝑎𝑟 ෞ𝛼2 = 
𝜎2

𝛴𝑥2𝑖
2 (1−𝑟23

2 )

• Therefore  
𝑣𝑎𝑟 ෞ𝛼2

𝑣𝑎𝑟 ෢𝛽2
=

1

(1−𝑟23
2 )

• Since 0 ≤𝑟23
2 ≤1, therefore𝑣𝑎𝑟 ෞ𝛼2 ≥𝑣𝑎𝑟 ෢𝛽2



• The implication of this finding is that the inclusion of the 
unnecessary variable X3 makes the variance of ෞ𝛼2larger than 
necessary, thereby makingෞ𝛼2 less precise. This is also true of 
ෞ𝛼1.

The asymmetry in the two types of specification biases 
• If we exclude a relevant variable, the coefficients of the 

variables retained in the model are generally biased as well as 
inconsistent, the error variance is incorrectly estimated, and 
the usual hypothesis-testing procedures become invalid. 

• On the other hand, including an irrelevant variable in the 
model still gives us unbiased and consistent estimates of the 
coefficients in the true model, the error variance is correctly 
estimated, and the conventional hypothesis-testing methods 
are still valid; the only penalty we pay for the inclusion of the 
superfluous variable is that the estimated variances of the 
coefficients are larger, and as a result our probability 
inferences about the parameters are less precise. 



• An unwanted conclusion here would be that it is better 
to include irrelevant variables than to omit the relevant 
ones. But this philosophy is not to be espoused 
because addition of unnecessary variables will lead to 
loss in efficiency of the estimators and may also lead to 
the problem of multicollinearity, not to mention the 
loss of degrees of freedom. 

Therefore,

• In general, the best approach is to include only 
explanatory variables that, on theoretical grounds, 
directly influence the dependent variable and that are 
not accounted for by other included variables.


