STAT-C-301 Sampling Distributions UNIT III

Use of the Chi-Square Statistic in a Test of Association Between a Risk Factor and a Disease

The Chi-Square (X²) Statistic

- Categorical data may be displayed in contingency tables
- The chi-square statistic compares the observed count in each table cell to the count which would be expected under the assumption of no association between the row and column classifications
- The chi-square statistic may be used to test the hypothesis of no association between two or more groups, populations, or criteria
- Observed counts are compared to expected counts

Test of Independence of Attributes

CONTINGENCY TABLES

Criterion 2	Criterion 1					
	1	2	3		С	Total
1	n ₁₁	n ₁₂	n ₁₃	• • •	n _{1c}	r ₁
2	n ₂₁	N 22	N ₂₃	• • •	n _{2c}	r ₂
3	n ₃₁				•	
•	•				•	
r	N _{r1}	• • •	• • •	• • •	N rc	r r
Total	C ₁	C ₂			Cc	n

The test statistic is:

$$c^{2} = \sum_{i=1}^{k} \left[\frac{(O_{i} - E_{i})^{2}}{E_{i}} \right]$$

- The degrees of freedom are:
 (r-1)(c-1)
 - r = # of rows and c = # of columns
- Where:
 - O_i = the observed frequency in the ith cell of the table
 - E_i = the expected frequency in the ith cell of the table

Example: Is Disease Associated With Exposure?

- The relationship between disease and exposure may be displayed in a contingency table
- We can see that:

37/54 = 68 % of **diseased** individuals were exposed 13/66 = 20 % of **non-diseased** were exposed

Do these data suggest an association between disease and exposure?

Disease				
Exposure	Yes	No	Total	
Yes	37	13	50	
No	17	53	70	
Total	54	66	120	

• The observed numbers or counts in the table are:

Disease				
Exposure	Yes	No	Total	
Yes	37	13	50	
No	17	53	70	
Total	54	66	120	

Testof NoAssociation

- Question of interest: is disease associated with exposure?
- Calculate what numbers of "exposed" and "non-exposed" individuals would be expected in each disease group if the probability of disease were the same in both groups
- If there was no association between exposure and disease, then the expected counts should nearly equal the observed counts, and the value of the chi-square statistic would be small
- In this example, we can calculate:

Overall proportion with exposure = 50/120 = 0.42Overall proportion without exposure = 70/120 = 0.58 = 1-0.42 Under the assumption of no association between exposure and disease, the expected numbers or counts in the table are:

Disease				
Exposure	Yes	No	Total	
Yes	50/120 x 54 = 22.5	50/120 x 66 = 27.5	50	
Νο	70/120 x 54 = 31.5	70/120 x 66 = 38.5	70	
Total	54	66	120	

Chi-Squared (X²) Statistic

$$\chi^2 = \sum_{i} \frac{(O_i - E_i)^2}{E_i}$$

$$=\frac{(37-22.5)^2}{22.5}+\frac{(13-27.5)^2}{27.5}$$

$$+\frac{(17-31.5)^2}{31.5}+\frac{(53-38.5)^2}{38.5}$$

- The test statistic is:
 - $-\chi^2$ = 29.1 with 1 degree of freedom
- Assumption: no association between disease and exposure
- A small value of the χ^2 statistic supports this assumption (observed counts and expected counts would be similar)
- A large value of the χ² statistic would not support this assumption (observed counts and expected counts would differ)
- What is the probability of obtaining a statistic of this magnitude or larger when there is no association?

Probability Associated with a X²Statistic

- If the assumption of no association is true, then what is the probability of observing this value of the χ^2 statistic?
- Table A.8 of the Pagano text provides the probability (area in upper tail of the distribution) associated with values of the chi-square statistic for varying degrees of freedom
- Degrees of freedom = 1 for a 2x2 table:

	Area in Upper Tail					
df	0.100	0.0500		0.0010		
1	2.71	3.84		10.83		

Conclusion: Test of (No)Association

- For the data in this example, $\chi^2 = 29.1$ with 1 degree of freedom
- From the chi-squared table, the probability obtaining a statistic of this magnitude or larger when there is no association is < 0.001</p>
- In other words, the probability of obtaining discrepancies between observed and expected counts of this magnitude is < 0.001 (unlikely to occur by chance alone)
- Conclude that our finding is unlikely to occur if there is no association between disease and exposure
 - Thus, we conclude that there appears to be an association

Guidelines for Interpreting the X²Statistic

- The χ^2 statistic is calculated under the assumption of no association
- Large value of χ^2 statistic \Rightarrow small probability of occurring by chance alone (p < 0.05) \Rightarrow conclude that association exists between disease and exposure
- Small value of χ^2 statistic \Rightarrow large probability of occurring by chance alone (p > 0.05) \Rightarrow conclude that **no association** exists between disease and exposure

Suppose:

Disease				
Exposure	Yes	No	Total	
Yes	а	b	a+b	
Νο	С	d	c+d	
Total	a+c	b+d	n	

• Then we can write:

$$\chi_1^2 = \frac{n(ad-bc)^2}{(a+c)(b+d)(a+b)(c+d)}$$

Short-Cut X²Formula for the Example

Using this formula for the previous example gives

$$\chi_1^2 = \frac{120[(37)(53) - (13)(17)]^2}{54(66)(50)(70)}$$

= 29.1

Disease Yes Exposure No Total Yes 37 13 50 No 17 53 70 Total 54 66 120

- Same as before!

Helpful Hints Regarding the Chi-Square Statistic

- The calculations use expected and observed counts or frequencies, not proportions
- The χ^2 short-cut formula applies only to 2x2 tables
- Probabilities are available from tables and computing packages

Review

- The χ^2 statistic provides a statistical test for ascertaining whether an association exists between disease and exposure
- A large value of the χ² statistic indicates that the observed data are unlikely under an assumption of no association between disease and exposure ⇒ small probability (p-value) ⇒ association
- A small value of the χ^2 statistic indicates that the observed data are likely under an assumption of no association between disease and exposure \Rightarrow large probability (pvalue) \Rightarrow no association

Applications of the Chi-Square Statistic in Epidemiology

Applications of the X^2 Statistic in Epidemiology

- Cohort study (2 samples)
- Case-control study (2 samples)
- Matched case-control study (paired cases and controls)

Disease				
Factor	Present (D)	Absent (D)	Total	
Pres ent (F)	а	b	a+b	
Abs ent (\overline{F})	С	d	c+d	
Total	a+c	b+d	Ν	

Cohort Study: Measure of Association

Assumptions:

The two samples are independent

- € Let a+b = number of people exposed to the risk factor
- € Let c+d = number of people not exposed to the risk factor
- Assess whether there is association between exposure and disease by calculating the relative risk (RR)

We can define the relative risk of disease:
 p1= P(disease factorpresent)=P(DF)
 p2= P(disease factorabsent)=P(DF)

For these samples, we can estimate the relative risk as:

а

$$RR = \frac{a+b}{c}$$

We can test the hypothesis that RR=1 by calculating the chisquare test statistic

$$\chi_1^2 = \frac{n(ad-bc)^2}{(a+c)(b+d)(a+b)(c+d)}$$

Example: Test of Association in a Cohort Study

Develop CHD				
Smoke	Yes	No	Total	
Yes	84	2916	3000	
No	87	4913	5000	
Total	171	7829	8000	

- RR = 1.61
- Chi-square statistic = $\chi^2_1 = 10.1 =$

 $8000(84(4913)-2916(87))^2$

(84+87)(2916+4913)(84+2916)(87+4913)

Example: Test of Association in a Cohort Study

- Using Table A.8 in the Pagano text, the probability is less than 0.010 (between 0.001 and 0.010)
- This supports an association between exposure and disease

	Area in Upper Tail					
df	0.100	0.0500		0.0010		
1	2.71	3.84		10.83		

Disease				
Factor	Present (case)	Absent (control)	Total	
Present	а	b	a+b	
Absent	С	d	c+d	
Total	a+c	b+d	Ν	

Case-Control Study: Measure of Association

- Assumptions
 - The samples are independent
 - \in **Cases** = diseased individuals = a+c
 - € Controls = non-diseased individuals = b+d
- We are interested in whether:

 $P(F|D) = P(F|\overline{D})$

- We cannot estimate P(D), the prevalence of the disease and, hence, cannot estimate the RR
- Assess whether there is association between exposure and disease by calculating the odds ratio (OR)

Case-Control Study: Odds for Diseased Group

• The odds of exposure for the diseased group is:

$\frac{p_1}{1-p_1} = \frac{\frac{a}{a+c}}{\frac{c}{c}}$	<u>c</u> _ <u>a</u> c		
	Dise	ease	
Factor	Present (case)	Absent (control)	Total
Present	а	b	a+b
Absent	С	d	c+d
Total	a+c	b+d	Ν

Case-Control Study: Odds for Non-Diseased Group

• The odds of exposure for the non-diseased group is:

The odds ratio is:

 p_1 1-p₁ p₂ $1 - p_2$

And is estimated by OR=

а

$\frac{c}{b} = \frac{ad}{bc}$

Case-Control Study: Test of Association

We can test whether OR=1 by calculating the chi-square statistic:

$$\chi_1^2 = \frac{n(ad-bc)^2}{(a+c)(b+d)(a+b)(c+d)}$$

Example: Test of Association in a Case-Control Study

Disease				
Past Smokin g	CHD Cases	Controls	Total	
Yes	112	176	288	
No	88	224	312	
Total	200	400	600	

• OR=1.62

• Chi-square statistic = $\chi^2_1 = 7.69 =$

 $\frac{600(112(224) - 176(88))^2}{(112 + 88)(176 + 224)(112 + 176)(88 + 224)}$

Example: Test of Association in a Case-Control Study

- Using Table A.8 in the Pagano text, the probability is between 0.001 and 0.01
- This supports association between exposure and disease

Area in Upper Tail							
df	0.100	0.0500		0.0010			
1	2.71	3.84		10.83			

		Controls	
		Exposed	Not Exposed
Cases	Exposed	aa	bb
	Not exposed	CC	dd

Matched Study: Measure of Association

- Assumptions
 - Case-control pairs are matched on characteristics such as
 - Samples are not independent
- The discordant pairs are case-control pairs with different exposure histories
 - The matched odds ratio is estimated by bb/cc
 - € Pairs in which cases exposed but controls not = bb
 - € Pairs in which controls exposed but cases not = cc
 - Assess whether there is association between exposure and disease by calculating the matched odds ratio (OR)

Matched Case-Control Study: Test of Association

- We can test whether OR = 1 by calculating McNemar's statistic
- McNemar's test statistic:

$$\chi_1^2 = \frac{(|bb-cc|-1)^2}{(bb+cc)}$$

Example: Test of Association in a Matched Study

		Controls	
		Exposed	Not Exposed
Cases	Exposed	2	4
	Not exposed	1	3

- OR = bb/cc = 4
- McNemar's test statistic = $\chi^2 = 0.80$

$$\chi_1^2 = \frac{(|4-1|-1)^2}{(4+1)}$$

Example: Test of Association in a Matched Study

- Using Table A.8 in the Pagano text, the probability is greater than 0.100
- This supports no association between exposure and disease

	Area in Upper Tail						
df	0.100	0.0500		0.0010			
1	2.71	3.84		10.83			

Review: Uses of the Chi-Squared Statistic

- The chi-squared statistic provides a test of the association between two or more groups, populations, or criteria
- The chi-square test can be used to test the strength of the association between exposure and disease in a cohort study, an unmatched case-control study, or a cross-sectional study
- McNemar's test can be used to test the strength of the association between exposure and disease in a matched case-control study