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The following is a general setup for a statistical

inference problem: There is an unknown parameter

that we would like to estimate. We get some data From

the population, and we estimate the desired parameter.

In the previous study, we discussed unknown

parameter θ is assumed to be a fixed (non-random)

quantity that is to be estimated by the observed data.

Here, we would like to discuss a different

framework for inference, namely the Bayesian

approach.



In the Bayesian framework, we treat the unknown

parameter, θ, as a random variable. More specifically, we

assume that we have some initial guess about the

distribution of θ . This distribution is called the prior

distribution. After observing some data, we update the

distribution of θ (based on the observed data). This step

is usually done using Bayes' Rule. That is why this

approach is called the Bayesian approach. Here, to

motivate the Bayesian approach, we will provide two

examples of statistical problems that might be solved

using the Bayesian approach.



Example:

Suppose that you would like to estimate the portion of

voters in your town that plan to vote for Party A in an

upcoming election. To do so, you take a random

sample of size n from the likely voters in the town.

Since you have a limited amount of time and

resources, your sample is relatively small.

Specifically, suppose that n=20. After doing your

sampling, you find out that 6 people in your sample

say they will vote for Party A.



Solution :

Let θ be the true portion of voters in your town who plan to

vote for Party A. You might want to estimate θ as

 θ=
6
20

=0.3

In fact, in absence of any other data, that seems to be a

reasonable estimate. However, you might feel that n=20 is too

small. Thus, your guess is that the error in your estimation

might be too high. While thinking about this problem, you

remember that the data from the previous election is available

to you. You look at that data and find out that, in the previous

election, 40% of the people in your town voted for Party A.



How can you use this data to possibly improve your

estimate of θ? You might argue as follows:

Although the portion of votes for Party A changes

from one election to another, the change is not usually

very drastic. Therefore, given that in the previous

election 40% of the voters voted for Party A, you

might want to model the portion of votes for Party A in

the next election as a random variable θ with a

probability density function, f(θ), that is mostly

concentrated around θ=0.4.



For example, you might want to choose the density

such that

E[θ]=0.4

Such a distribution shows your prior belief about θ

in the absence of any additional data. That is,

before taking your random sample of size n=20,

this is your guess about the distribution of θ .

Therefore, you initially have the prior distribution

f(θ).



Then you collect some data, shown by D. More

specifically, here your data is a random sample of size

n=20 voters, 6 of whom are voting for Party A. As we

will discuss in more detail, you can then proceed to

find an updated distribution for θ , called the posterior

distribution. using Bayes' rule:

f(θ|D)=
P(D|θ)f(θ)
P(D)

.

We can now use the posterior density, f(θ|D), to further

draw inferences about θ .



Bayesian Statistical Inference

The goal is to draw inferences about an unknown

variable X by observing a related random variable Y.

The unknown variable is modeled as a random variable

X, with prior distribution

f(x),if X is continuous, P(x), if X is discrete.

After observing the value of the random variable Y, we

find the posterior distribution of X.



This is the conditional PDF (or PMF) of X given Y=y,

f(x|y) or P(x|y).

The posterior distribution is usually found using Bayes'

formula. Using the posterior distribution, we can then

find point or interval estimates of X. The above

equation, as we have seen before, is just one way of

writing Bayes' rule. If either X or Y are continuous

random variables, we can replace the corresponding

PMF with PDF in the above formula.



Prior and Posterior

Let X be the random variable whose value we try to

estimate. Let Y be the observed random variable. That

is, we have observed Y=y, and we would like to estimate

X. Assuming both X and Y are discrete, we can write

P(X=x|Y=y) =
P(X=x,Y=y)
P(Y=y)

=
P(Y=y|X=x)P(X=x)

P(Y=y)
.

Using our notation for PMF and conditional PMF,



the above equation can be rewritten as

P(x|y) =
P(y|x)P(x)

P(y)
.

For example, if X is a continuous random variable, while

Y is discrete we can write

f(x|y) =
P(y|x)f(x)
P(y)

.

To find the denominator (P(y) or f(y)), we often use the

law of total probability.



Example :

Let X∼ Uniform(0,1).

Suppose that we know Y|X= x∼ Geometric(x).

Find the posterior density of X given Y=2, f(x|2).

Solution: Using Bayes' rule we have

f(x|2) =
P(2|x)f(x)
P(2)

.

We know Y|X= x∼ Geometric(x), so

P(y|x) =
x(1−x)
y−1

, for y=1,2,⋯.



Therefore, P(2|x) = x(1−x).

To find P𝑌(2), we can use the law of total probability

P𝑌(2) =  −∞

∞
P(2|x)f(x)dx

=  0
1
x(1−x)⋅1dx =

1
6
.

Therefore, we obtain

f(x|2) =
x(1−x)⋅1

1
6

= 6x(1−x), for 0 ≤x ≤1.



The main problem of Bayesian estimation is that

of combining prior feelings about a parameter

with direct sample evidence, and this is

accomplished by determining ϕ(θ|x), the

conditional density of Ө given X = x. In contrast

to the prior distribution of Ө, this conditional

distribution (which also reflects the direct sample

evidence) is called the posterior distribution of Ө.



In general, if h(θ) is the value of the prior

distribution of Ө at θ and we want to combine the

information that it conveys with direct sample

evidence about Ө, for instance

The value of a statistic

W = u (X1,X2, . . . ,Xn), we determine the posterior

distribution of Ө by means of the formula

ϕ(θ|w) = f (θ,w) g(w)



ϕ(θ|w) = h(θ) · f (w|θ) g(w)

Here f (w|θ) is the value of the sampling distribution of

W given Ө = θ at w, f (θ,w) is the value of the joint

distribution of Ө and W at θ and w, and g(w) is the value

of the marginal distribution of W at w. Note that the

preceding formula for ϕ(θ|w) is, in fact, an extension of

Bayes’ theorem to the continuous case. Hence, the term

“Bayesian estimation.”



Once the posterior distribution of a parameter has

been obtained, it can be used to make estimates.

Example: If X1,X2, . . . , Xn is a random sample

from exponential distribution with pdf

f (x,θ) =
1

𝜃
exp (-

𝑥

𝜃
) and the prior distribution of

Ө is a uniform distribution with the pdf
1

𝜃
, then

find the posterior distribution of Ө given X = x.

And find Bayes estimator for 𝜃 also.



For Ө = θ we have

f (x|θ) =  
1

𝜃
e
(− 𝑥

𝜃
)
, 0 < 𝑥 < ∞.

h(θ) =
1

𝜃
, θ > 0

Then the joint pdf of X1,X2, . . . , Xn and θ

f (θ, x) =  𝑖=1
𝑛 [f (x|θ)] .h(θ)

f (θ, x) =  𝑖=1
𝑛 [

1

𝜃
e
(− 𝑥

𝜃
)] .

1

𝜃

f (θ, x) = (
1

𝜃
)𝑛 e

(−
 𝑥𝑖
𝜃

).
1

𝜃



𝑔(𝑥) =   0
∞ 1

𝜃𝑛
𝑒−

 𝑥𝑖
θ .

1

𝜃
𝑑𝜃

=  0
∞ 1

𝜃𝑛+1
. 𝑒−

 𝑥𝑖
θ 𝑑𝜃

= 
|𝑛

( 𝑥𝑖)
𝑛 [ by Gamma function]

Then posterior distribution of  𝜃

ϕ(θ|x) = 
f (θ, x)
𝑔(𝑥)

=  

1

𝜃𝑛+1
.𝑒
−
 𝑥𝑖
θ

|𝑛

( 𝑥𝑖)
𝑛



ϕ(θ|x) = 
(𝑛  𝑥)𝑛

|𝑛
.

1

𝜃𝑛+1
𝑒−

𝑛 𝑥

θ

θ > 0

The above distribution is inverted gamma distribution

And the Bayes estimator for θ

E(Ө|x) =  0
∞
θ.

(𝑛  𝑥)𝑛

|𝑛
.

1

𝜃𝑛+1
𝑒−

𝑛 𝑥

θ 𝑑𝜃

= 
(𝑛  𝑥)𝑛

|𝑛
 0
∞ 1

𝜃𝑛
𝑒−

𝑛 𝑥

θ 𝑑𝜃



E(Ө|x) =  
(𝑛  𝑥)𝑛

|𝑛

|𝑛−1

(𝑛  𝑥)𝑛−1

=  
𝑛  𝑥

(𝑛−1)

is a value of an estimator of θ that minimize the Bayes risk 

when the loss function is quadratic.

Question: If X1,X2, . . . , Xn is a random sample from poisson

distribution with unknown parameter λ, the prior distribution of

its parameter is a gamma distribution with parameter α and β.

find the posterior distribution and Bayes estimator for 𝜃.

Solution: E(λ|x) =
(𝑛+𝛽)

(𝛼+𝑛  𝑥)
( try to solve)



Question: If X is a binomial random variable and the prior
distribution of Ө is a beta distribution with the parameters
α and β, then the posterior distribution of Ө given X = x is
a beta distribution with the parameters x+α and n−x+β.

Solution:

Chapter -10 POINT ESTIMATION, Page No.-309.[Reference book 1]
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