[This question paper contains 5 printed pages.]

Your Roll No.....

Maximum Marks: 75

Sr. No. of Question Paper: 5799 H

Unique Paper Code : 237153

Name of the Paper : Algebra - I

Name of the Course : B.Sc. (Hons.) Statistics

Semester : I 6,9) Duration: 3 Hours

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. Attempt six questions in all, selecting three questions from each section.

SECTION I

(a) If α , β , γ are roots of the equation $x^3 - x^2 + x - 1 = 0$,

then find the value of

(i) $\sum (\alpha-9)$

(ii)
$$\sum (\alpha \beta - 1)$$

(iii)
$$\sum \alpha (1-\beta \gamma)$$

P.T.O.

5799

(b) Diminish the roots of the equation $x^4 - 16x^3 - 8x^2 + 4x + 1 = 0$ by 2.

- (c) Find the equation whose roots are the square of the roots of equation $x^3 10x^2 + 9x 1 = 0$. $(4\frac{1}{2},4,4)$
- 2. (a) Find the modulus and argument of complex number $\frac{(\sin\alpha + i\cos\alpha)^4}{(\cos\alpha + i\cos\alpha)^4}$

(b) If $z = \cos\theta + i \sin\theta$ then prove that $z^n + \frac{1}{z^n} = 2\cos^n\theta$ and $z^n - \frac{1}{z^n} = 2i \sin n\theta$

(c) Find all the values of $(1+i\sqrt{3})^{\frac{z}{3}}$. $(4^{\frac{1}{2}},4,4)$

(a) Show that, for any positive integer n > 1, n! < (n+1)ⁿ.
(b) If a, b, x and y are real numbers such that a² + b² = x² + y² = 1 then now.

y²=1 then prove that ax + by ≤ 1.

(c) If a, b, c represent length of sides of a triangle taken in order, then prove that

- $9(a^3+b^3+c^3) > (a+b+c)^3.$ (4½,4,4)
- 4. (a) Solve, $x^3 7x^2 + 14x 8 = 0$, given that the roots of equation are in GP.
 - (b) If $\sin \alpha + \sin \beta + \sin \gamma = \cos \alpha + \cos \beta + \cos \gamma = 0$, then show that $\sum \sin 2\alpha = \sum \cos 2\alpha = 0$.
 - (c) If a, b and c are three positive numbers then, show that

$$\frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b} \ge 3$$
. (4½,4,4)

SECTION II

(4½,4,4) 5. (a) If $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, then prove that

 $(aI + bA)^n = a^nI + na^{n-1}bA$, where I is the two rowed identity matrix, n is a positive integer and a and b are arbitrary scalars.

- (b) Prove that
 - (i) $tr(AA') \geq 0$

5799

(c) Define Idempotent and Nilpotent matrices. $(4\frac{1}{2},5,3)$

(a) Prove that

$$\begin{vmatrix}
-2a & a+b & a+c \\
b+a & -2b & b+c \\
c+a & c+b & -2c
\end{vmatrix} = 4(a+b)(b+c)(c+a)$$

(b) Let e be the column vector with elements (1,1,1,...1) and e' its transposed row vector. Let A be n- square matrix and I the identity matrix. Let the matrix M(x) be given by M(x) = I + xAee' where x is a scalar.

(i) Prove that M(x) M(y) = M(x + y + kxy), where k is the scalar e'Ae.

(ii) Verify that reciprocal of M(x) is $M\left(\frac{-x}{1+kx}\right)$.

(iii) Show that the matrix $R = (r_{ij})$ where $r_{ii} = 1$; $r_{ij} = \rho$, $i \neq j$ can be written as $(1 - \rho)I + pe^{e'}$. Hence find the reciprocal of this matrix.

 $(5,7^{1/2})$

(a) Show that every square matrix can be expressed uniquely as the sum of a Hermitian and a Skew-Hermitian matrix.

(b) Use determinants to solve the following equations:

$$ax + by + cz = 1$$

 $a^3x + b^2y + c^2z = k$
 $a^3x + b^3y + c^3z = k^2$ (7.5½)

(a) If A is a non singular matrix of order n, then show that

(i)
$$|adjA| = |A|^{n-1}$$

(ii)
$$adj(adjA) = |A|^{n-2}$$
. A

(iii)
$$|adj(adjA)| = |A|^{(n-1)^2}$$

(b) Show that the possible square roots of the two rowed identity matrix I are

$$\pm I$$
 and $\begin{pmatrix} \alpha & \beta \\ \gamma & -\alpha \end{pmatrix}$ where $1 - \alpha 2 = \beta \gamma$. (7½,5)