COMMON POOL OF GENERIC ELECTIVES (GE) Semester-V COURSES OFFERED BY DEPARTMENT OF MATHEMATICS

Category-IV

GENERIC ELECTIVES (GE-5(i)): NUMERICAL METHODS

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course				Pre-requisite
		Lecture	Tutorial	Practical/ Practice	criteria	of the course
Numerical Methods	4	3	0	1	Class XII pass with Mathematics	NIL

Learning Objectives: The core purpose of the course is to:

 Acquaint students with various topics in numerical solutions of nonlinear equations in one variable, interpolation and approximation, numerical differentiation and integration, direct methods for solving linear systems, numerical solution of ordinary differential equations using Computer Algebra System (CAS).

Learning Outcomes: The course will enable the students to:

- Find the consequences of finite precision and the inherent limits of numerical methods.
- Appropriate numerical methods to solve algebraic and transcendental equations.
- Solve first order initial value problems of ODE's numerically using Euler methods.

SYLLABUS OF GE-5(i)

UNIT-I: Errors and Roots of Transcendental and Polynomial Equations (12 hours)

Errors: Roundoff error, Local truncation error, Global truncation error; Order of a method, Convergence, and terminal conditions; Bisection method, Secant method, Regula–Falsi method, Newton–Raphson method.

UNIT-II: Algebraic Linear Systems and Interpolation

(18 hours)

Gaussian elimination method (with row pivoting); Iterative methods: Jacobi method, Gauss-Seidel method; Interpolation: Lagrange form, Newton form, Finite difference operators.

UNIT-III: Numerical Differentiation, Integration and ODE

(15 hours)

First and second order numerical derivatives; Trapezoidal rule, Simpson's rule for numerical integration; Ordinary differential equation: Euler's, and Runge-Kutta method.

Essential Readings

- 1. Chapra, Steven C. (2018). Applied Numerical Methods with MATLAB for Engineers and Scientists (4th ed.). McGraw-Hill Education.
- 2. Fausett, Laurene V. (2009). Applied Numerical Analysis Using MATLAB. Pearson. India.
- 3. Jain, M. K., Iyengar, S. R. K., & Jain R. K. (2012). Numerical Methods for Scientific and Engineering Computation (6th ed.). New Age International Publishers. Delhi.

Suggestive Reading

• Bradie, Brian (2006). A Friendly Introduction to Numerical Analysis. Pearson Education India. Dorling Kindersley (India) Pvt. Ltd. Third Impression, 2011.

Note: Non programmable scientific calculator may be allowed in the University examination.

Practical (30 hours): Practical/Lab work to be performed in Computer Lab: Use of computer algebra software (CAS), for example Python/SageMath/Mathematica/MATLAB/Maple/Maxima/Scilab etc., for developing the following numerical programs:

- 1. Bisection method
- 2. Secant method and Regula-Falsi method
- 3. Newton-Raphson method
- 4. Gauss-Jacobi method and Gauss-Seidel method
- 5. Lagrange interpolation and Newton interpolation
- 6. Trapezoidal rule and Simpson's rule
- 7. Euler's, and Runge-Kutta methods for solving first order initial-value problems of ordinary differential equations.

GENERIC ELECTIVES (GE-5(ii)): MATHEMATICAL PYTHON

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course				Pre-requisite
		Lecture		Practical/ Practice	criteria	of the course
Mathematical Python	4	3	0	1	Class XII pass with Mathematics	knowledge of

Learning Objectives: The Learning Objectives of this course are as follows:

- To be able to model and solve mathematical problems using Python Programs.
- To experience utility of open-source resources for numerical and symbolic mathematical software systems.

Learning Outcomes: This course will enable the students to use Python:

- For numerical and symbolic computation in mathematical problems from calculus, algebra, and geometry.
- To tabulate and plot diverse graphs of functions and understand tracing of shapes, geometries, and fractals.
- To prepare smart documents with LaTeX interface.

SYLLABUS OF GE-5(ii)

Theory

UNIT – I: Drawing Shapes, Graphing and Visualization

(15 hours)

Drawing diverse shapes using code and Turtle; Using matplotlib and NumPy for data organization, Structuring and plotting lines, bars, markers, contours and fields, managing subplots and axes; Pyplot and subplots, Animations of decay, Bayes update, Random walk.

UNIT – II: Numerical and Symbolic Solutions of Mathematical Problems (18 hours)

NumPy for scalars and linear algebra on *n*-dimensional arrays; Computing eigenspace, Solving dynamical systems on coupled ordinary differential equations, Functional programming fundamentals using NumPy; Symbolic computation and SymPy: Differentiation and integration of functions, Limits, Solution of ordinary differential equations, Computation of eigenvalues, Solution of expressions at multiple points (lambdify), Simplification of expressions, Factorization, Collecting and canceling terms, Partial fraction decomposition, Trigonometric simplification, Exponential and logarithms, Series expansion and finite differences, Solvers, Recursive equations.

UNIT – III: Document Generation with Python and LaTeX (12 hours)

Pretty printing using SymPy; Pandas API for IO tools: interfacing Python with text/csv, HTML, LaTeX, XML, MSExcel, OpenDocument, and other such formats; Pylatex and writing document files from Python with auto-computed values, Plots and visualizations.

Practical (30 hours): Software labs using IDE such as Spyder and Python Libraries.

- Installation, update, and maintenance of code, troubleshooting.
- Implementation of all methods learned in theory.
- Explore and explain API level integration and working of two problems with standard Python code.

Essential Readings

- 1. Farrell, Peter (2019). Math Adventures with Python. No Starch Press. ISBN Number: 978-1-59327-867-0.
- 2. Farrell, Peter and et al. (2020). The Statistics and Calculus with Python Workshop. Packet Publishing Ltd. ISBN: 978-1-80020-976-3.
- 3. Saha, Amit (2015). Doing Math with Python. No Starch Press. ISBN: 978-1-59327-640-9

Suggestive Readings

- Morley, Sam (2022). Applying Math with Python (2nd ed.). Packet Publishing Ltd. ISBN: 978-1-80461-837-0
- Online resources and documentation on the libraries, such as:
 - https://matplotlib.org
 - https://sympy.org
 - https://pandas.pydata.org
 - https://numpy.org
 - https://pypi.org
 - https://patrickwalls.github.io/mathematicalpython/

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.